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DIFFEEiENTIAL CROSS SECTIONS FOR THE PRODUCTION O F  PROTOES I N  THE 
REACTIONS OF 160-MEV PROTONS ON COMPLEX IKJCLEI* 

R .  W .  Pee l l e ,  T .  A .  Love, N .  W .  H i l l ,  and R .  T .  Santoro 

ABSTRACT 

D i f f e r e n t i a l  cross  sec t ions  i n  angle  and energy were 
obtained by f l i g h t - t i m e  spectrometry f o r  secondary protons 
above 20 MeV from 160-MeV protons on Be, C ,  H20, Ad ,  Co, and 
B i  t a r g e t s .  Enough angles were s tud ied  f o r  rough angular 
d i s t r i b u t i o n s  t o  be presented f o r  aluminum and cobal t .  A l l  
secondary charged p a r t i c l e s  were assumed t o  be protons,  f o r  
which t h e  energy r e so lu t ion  var ied  from 25 t o  5%. The ob- 
served d i f f e r e n t i a l  cross  sec t ions  change smoothly with angle 
and t a r g e t  mass, and show no peak corresponding t o  quasi-free 
s c a t t e r i n g  near the  energy corresponding t o  f r e e  nucleon- 
nucleon s c a t t e r i n g .  The measurements a r e  compared with o thers  
ava i l ab le  a t  t he  same energy and w i t h  i n t r anuc lea r  cascade 
est imates ,  including evaporation. The observed cross  sec t ions  
a r e  l a r g e r  than  the  estimated ones a t  angles of 93 and 120', 
and a t  low energ ies  for angles more forward than 45'. 
t h e  observed cross  sec t ions  a r e  i n  accord with t h e  Monte 
Carlo es t imates .  

A t  60' 

-: V T t I  on 

I. INTRODUCTION 

This r epor t  p resents  t he  methods and r e s u l t s  of an e x p e r b e n t  con- 

ducted a t  t he  Harvard Synchrocyclotron t o  determine a s e r i e s  of d i f f e r -  

e n t i a l  c ross  sec t ions  for  the  production of secondary protons i n  the  

in t e rac t ions  of 160-MeV protons on complex nuc le i  ( C ,  0, Be, A d ,  Co, S i ) .  

Data on production of neutron secondaries were obtained during t h e  same 

s e r i e s  of experiments; i n  f a c t ,  t he  r e s u l t s  given here  a r e  from a der iv-  

a t i v e  experiment which u t i l i z e d  much equipment designed for  fas t -neut ron  

spectrometry.  This l i n k  explains  t h e  unnatura l  use here  of f l i gh t - t ime  

spectrometry. 

We i n i t i a t e d  the  experiment i n  order  t o  increase  our knowledge of 

t he  production of secondary nucleons by protons i n  t h e  energy region 

s i g n i f i c a n t  f o r  manned spaceflight. '  While charged r eac t ion  products 

*Work funded by the  National Aeronautics and Space Administration 

'F. C .  Maienschein, Neutron Phys. Div. -- Space Rad. Shielding - Res. 
under NASA Order R-104(1). 

Ann. Progr .  Rept.  Aug. 31, 1962, ORNL CF-62-10-29, pp. 172-181. --- 



themselves c o n s t i t u t e  a r e l a t i v e l y  i n s i g n i f i c a n t  r a d i a t i o n  hazard except 

i n  t i s s u e ,  data  on proton secondaries a r e  valuable  f o r  checking aga ins t  

c ross  sec t ions  pred ic ted  by theo r i e s  which t r e a t  protons and neutrons 

symmetrically. Strauch" has reviewed the  forms of t he  secondary nucleon 

spec t r a  expected and observed f o r  reac t ions  of nucleons near 100 MeV and 

above. 

The cross sec t ions  discussed he re in  a r e  defined f o r  t he  production 

of a secondary proton i n  a spec i f i ed  energy and angle  range, regard less  

of any production of o the r  protons,  neutrons,  or gamma rays i n  the  same 

reac t ion .  I f  such a d i f f e r e n t i a l  cross  sec t ion ,  w r i t t e n  a s  o (E;E0,8) P , XPY 
( r e f .  3 ) ,  i s  in t eg ra t ed  over a l l  secondary energ ies  and s o l i d  angle,  the  

r e s u l t  i s  

t h e  product of t he  nonelas t ic  cross  sec t ion  and the  average m u l t i p l i c i t y  

f o r  production of secondary protons i n  none la s t i c  proton reac t ions  a t  

energy E. 

f o r  separat ing t h e  e l a s t i c  s c a t t e r i n g ,  IS 

measured a t  small  s c a t t e r i n g  angles i n  our experiment. 

Unfortunately, because of spectrometer r e s o l u t i o n  inadequate 

(E ' ,@)  w a s  not d i r e c t l y  
P,XPY 

Preliminary r e s u l t s  from t h i s  experiment 4 s 5  and from r e l a t e d  secon- 

dary nucleon and gamma-ray experiments6 i n  t h e  same s e r i e s  a r e  a l ready  

ava i l ab le .  

a r e  comparable t o  those presented here ,  except t h a t  t hey  have narrower 

The "telescope" experiments of Gibson L- e t  a1.6 i n  t h i s  s e r i e s  

2 A .  K. Strauch, Measurements of Secondary Spec t r a  from High-Energy 
Nuclear Reactions,  TI-= 2, p .  409 (19- - 

C. D. Zerby- and H .  Goldstein, .  Neutron Phys . Div. Ann. Progr . Rept . - - -- 7 

Aug. 1, 1963, ORNL-3499, Vol. 11, p p m .  
4 R .  W .  Pee l l e  -- e t  a l . ,  p .  331 i n  Second Symposium - on P ro tec t ion  

Against Radiations i n  -' Space NASA SP-71-65). 
5 R .  W. Pee l l e  e t  aL., Neutron Phys. Div. Ann. Progr .  Rept. Aug. 1, 

1963, ORNL-3499, Vol. 11, p.  73. 
-- ----- 

- W. A .  Gibson e t  a l . ,  p .  331 i n  Second Symposium on P ro tec t ion  - 6  -- 
Against Radiations -- i n  Space, NASA SP-7-5);BR.rus, B. W .  Rust, 
and C .  Schneeberger, Neutron Phys. Div. Ann. Progr .  Rept.  Aug .  1, 1965, 
ORNL-3858, Vol. 11, p m .  Zobel, F. C M a G h e F a n d  R .  Scroggs, 
Spec t ra  of Gamma Rays Produced -- by t h e  I n t e r a c t i o n  - of 160 MeV Protons -- with Be, - C, - 0, - A l ,  Co, -- and B i ,  ORNL-3506 (1965). 

-- 
--- 
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energy r e so lu t ion  a t  t h e  highest  

below 50 MeV, and were performed 

t a r g e t s .  

An inc ident  100- t o  600-MeV 

energies ,  do not  extend t o  secondaries 

on a somewhat d i f f e r e n t  s e l ec t ion  of 

nucleon i s  now conventionally thought 

t o  i n t e r a c t  i n t i t i a l l y  w i t h  a n  e f f e c t i v e l y  i s o l a t e d  t a r g e t  n ~ c l e o n . ~  

This view i s  r a t iona l i zed  by the inc ident  nucleon's sho r t  wavelength and 

long pathlength i n  nuclear matter. Sometimes one o r  both nucleons w i l l  

i n t e r a c t  again,  bu t  if t h i s  does not  happen, t h e  r eac t ion  i s  thought of 

a s  a pure "quasi-free"-% knockout s c a t t e r i n g  event.  

p a r t i c l e  nucleon cross  sect ions (n-p and p-p) a re  thought t o  dominate. 

I f ,  however, t h e  momentum t r a n s f e r  i s  very small, low-lying s t a t e s  of 

t h e  r e s i d u a l  nucleus a re  exci ted i n  what a r e  genera l ly  considered nuclear 

r a t h e r  than nccleon direct ,  reac t ions .  

I n  e i t h e r  case, free- 

When t h e  sequence of quasi-free in t e rac t ions  i s  complete, it i s  

o f t en  assumed t h a t  t h e  nucleus may be deemed uniformly "heated" so t h a t  

a nucleon evaporation process can occur, although Gugelot* and others  

have noted t h a t  equilibrium i s  a d r a s t i c  assumption f o r  an exc i t a t ion  

a t t a i n e d  through a simple primary i n t e r a c t i o n  which generates a s ing le  

deeply placed ''hole." 

such a primary process should be r e l a t i v e l y  s u i h l l  and a slc::ly viry ing 

func t ion  of the  incident  energy. 

I n  any case,  t.he r e s i d u a l  nuclear e x c i t a t i o n  from 

Low-energy-neutron spec t ra  observed a t  various angles by Grossg a t  

l9O MeV and proton spec t r a  observed by Fox and Ramse?' a t  160 MeV and 

by Baile?' a t  l 9 O  MeV show, even f o r  l i g h t  t a r g e t s ,  the  q u a l i t a t i v e  

*"Quasi-elastic" has been much used i n  t h i s  regard as suggested i n  
r e f .  15,  but  r ecen t ly  has been widely employed f o r  (p ,n)  reac t ions  between 
i soba r i c  analog s t a t e s .  "Quasi-free" seems more descr ipt ive.  "Knock-out" 
has been used a t  lower energies t o  descr ibe reac t ions  leading t o  low-lying 
r e s i d u a l  s t a t e s .  

7Perhaps f i r s t  suggested i n  t h e  cur ren t  context by R .  Serber,  Phys. 
Rev. 72, 114 (1947). 

8p. C .  Gugelot, p .  391 i n  Nuclear Reactions, Vol. I, P. M. Endt and 
M. Demeur, eds . ,  North Holland Publ ishers ,  Amsterdam (1959-1962). 

C .  E .  Gross, The Absolute Yieia of L o w  Eriei-gj; ?:e.;trcr, frcrc 190 9 - --- 
Proton Bombardment of Gold, Si lve r ,  Nickel, Aluminum, - and Carbon, UCRL- 
-1956). 

-- 
R .  Fox and N .  Ramsey, Phys. Rev. 125, 1609 (1962). 10 - 

"L. E .  Bailey,  -- Angle and Energy Di s t r ibu t ion  of Charged P a r t i c l e s  
- from High Energy Nuclear Bombardment - of Various E l z e n t s ,  U C R m n 9 5 6 ) .  
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f e a t u r e s  expected from evaporation spectra;  they  f u r t h e r  found t h a t  t he  

spec t r a  a r e  s u f f i c i e n t l y  independent of angle t o  be cons is ten t  with an 

evaporat ion model. 

A t  t h e  high-energy extreme of t h e  emitted spectrum s tud ie s  have been 

made of shape e l a s t i c  s c a t t e r i n g  a t  185 MeV,’” 90 MeV,13 and a t  160 MeV.14 

Near-e las t ic  reac t ions  leading t o  low exc i t ed  s t a t e s  have been s tudied  a t  

a l l  ava i l ab le  energies ,  l imi t ed  mostly by r e so lu t ion .  

I n  the  c e n t r a l  regions of the  emitted p a r t i c l e  spec t ra ,  where quasi- 

f r e e  s c a t t e r i n g  appears a t  energies  averaging a l i t t l e  below E c 0 s ~ 9 , ’ ~  

broadened by the  t a r g e t  nucleon momentum d i s t r i b u t i o n  a s  we l l  a s  by f a i l -  

ures  of t h e  quasi-free approximation, t he  da t a  a r e  q u a l i t a t i v e l y  l e s s  

cons i s t en t .  

energy, a s  wel l  as a l a rge  share  of t h e  p a r t i c l e s  from l i g h t  t a r g e t s .  A t  

h igh energies  and small angles the  quasi-free peak w a s  apparent i n  carbon 

i n  the  experiment of Cladis,  Hess, and Moyer,” who observed it a t  30 and 

40’ f o r  340-MeV protons.  

protons a t  650 MeV.16 

coincidence with reac t ions  of t he  (p,2p)  type.  

0 

Yet t h i s  region should contain a l a r g e  share  of the  secondary 

Clean r e s u l t s  have a l s o  been seen f o r  outgoing 

Quasi-free s c a t t e r i n g  i s  now usua l ly  s tud ied  i n  

Strong, broad, high-energy neutron peaks a t  extreme forward angles  

were seen by Randle -- e t  a d 7  a t  160 MeV i n  elements as heavy as uranium, 

by Nelson, Guernsey, and Mottl’ a t  240 MeV, and by Bowen -- e t  a1.l’ a t  

143 MeV. 

s c a t t e r i n g  may be confused with nucleon quasi-free s c a t t e r i n g .  

forward-angle da t a  except Bowen’s su f fe red  from the  poor incident-energy 

r e s o l u t i o n  c h a r a c t e r i s t i c  of r e c i r c u l a t i n g  cyc lo t ron  beams. 

I n  the cases of small  momentum t r a n s f e r ,  nea r ly  e l a s t i c  nuclear  

All t he  

*Both r e l a t i v i s t i c  e f f e c t s  and t h e  average nuclear  p o t e n t i a l  a c t  t o  

’“A.  Johnnson -- e t  a l . ,  Arkiv Fysik 19, 541  (1961). 
reduce t h e  energy of any quasi-free s c a t t e r i n g  peak. 

G .  Gerstein,  J. Niederer, and K . S t r a u c h ,  Phys. Rev. 108, 427 

P .  G.  ROOS, E l a s t i c  and I n e l a s t i c  Sca t t e r ing  of High Energy Proton 

13 - (1957); A. E .  Glassgold and P. J .  Kellogg, Phys. Rev. - 109, 1291 (1958). 

- from Nuclei, Thesis, M.I.T.(19- e l a s t i c  s c a t t e r i n g ,  a l s o  see 
P .  G.  Roos and N .  Wall, Phys. Rev. - 140, 1237 (1965). 

J. B. Cladis,  W .  N .  Hess, and B. J. Moyer, Phys. Rev. 87, 425 (1952).  
L. S. Azhgirey e t  a l . ,  Nucl. Phys. 13, 258-280 (1958). 
T. C.  Randle e t  a l . ,  P h i l .  Mag. 4 4 , 7 2 5  (1953). 
B.  K .  Nelson, G .  Guernsey, and BTMott, Phys. Rev. 88, 1 (1952).  
P.  H .  Bowen e t  a l . ,  Nucl. Phys. 30, 475 (1962).  

14 -- 

15  
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18 
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0 Secondary protons observed i n  e a r l y  experiments a t  90 from 240-MeV 

protons incident  on carbon2’ had an i n t e n s i t y  s t rong  enough and an energy 

high enough t o  confirm e i t h e r  the  presence of very high momentum compo- 

nents i n  t h e  nucleus if  simple quasi-free s c a t t e r i n g  dominates o r  t h e  

importance of mul t ip le -sca t te r ing  e f f e c t s .  Quasi-free s c a t t e r i n g  charac- 

t e r i s t i c s  have a l s o  been obscure i n  r e s u l t s  a t  lower energies .  Strauch 

and Titus“’ d id  not see evidence of them i n  the  emerging proton spectrum 

a t  90-MeV incident  proton energy f o r  any element a t  40 or  i n  carbon for 
any angle,  though t h e  near -e las t ic  region appeared as expected. Similar ly ,  

Hofmann and Strauch22 i n  studying neutrons from 90-MeV protons s a w  no 

quasi-free peak a t  any angle except f o r  deuterium, beryllium, and l i t h ium 

t a r g e t s  a t  s m a l l  angles,  and therefore  were puzzled by why they should see 

no such peak i n  a l i g h t  element when even uranium showed a quasi-free peak 

a t  160 MeV i n  t h e  work of Randle e t  a1.17 

0 

-- 
Turning t o  the  150- t o  160-MeV region d i r e c t l y  of i n t e r e s t ,  nearly- 

e l a s t i c  s c a t t e r i n g  has been studied, a t  l e a s t  by Garron -- e t  al.23 and 

R o o ~ . ’ ~  

elements u n t i l  it approached h i s  counter threshold of about 40 MeV, and 

found broad peaks f o r  a l l  elements and angles which terminated i n  the  

50- t o  60-MeV region. It w i l l  be seen Gist these d2t.a; which a r e  sup- 

ported somewhat by the  work of Genin -- e t  ai.”* f o r  gold and of Radvanyi 

and Genin2’ f o r  carbon, a r e  i n  c o n f l i c t  with t h e  present  experiment. 

Baile?’ d id  not see such a cutoff i n  h i s  spec t r a  covering the  0 t o  65 
angle range. 

R O O ~  a l s o  followed the quasi-free s c a t t e r i n g  f o r  a number of 

0 

Deuterons, t r i t o n s ,  and o the r  p a r t i c l e s  have been seen i n  the  emerg- 

ing spec t r a  s ince  t h e  e a r l i e s t  days. 

dent neutron energy made summations over angle t o  conclude t h a t  t he re  

were 3% as many deuterons as protons emitted f o r  carbon and 1-85 f o r  lead,  

with a d ispropor t iona te ly  large share  of deuterons emit ted a t  angles below 

Hadley and York26 a t  9O-MeV inc i -  

z ” G .  M. Termer, Phys. Rev. - 83, 1067 (1951). 
‘51 A. K.  Strauch and F z  Titus, Phys. Rev. - 103, 200 (1956) and, e, -.. 

191 (1956) 
J. A. Hofmann and A. K.  Strauch, Phys. Rev. 90, 449 (1953). 
J. P. Garron e t  a l . ,  J. Phys. Radium 21, 31771960).  
J. Genin e t  al., J. Phys. Radium 22, m5 (1961). 

J. Hadley and H. York, Phys. Rev. 80, 345 n 9 5 0 ) .  

22 

2 3  

24 -- 
-- 

25P.  Radvanyi and J. Genin, J. PhysTRadium 21, 322 (1960). 
26 - 
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20'. 

many protons as deuterons from 155-MeV protons f o r  angles between 15 and 

60°, with qua l i t a t ive  s i m i l a r i t i e s  i n  the  shapes of the  proton and deut- 

eron spec t ra ,  and t h e  d a t a  of Cooper and Wilson27 a r e  i n  e s s e n t i a l  agree- 

ment with t h i s .  

as  protons a t  155 MeV from a gold t a r g e t  -- a remarkable s i m i l a r i t y  with 

t h e  carbon data .  

s tud ie s  a t  160 MeV. 

nat ions of d i r e c t  and ind i r ec t  pickup reac t ions ,  depending on whether o r  

not t he  incident  p a r t i c l e  involved had a l ready  scattered."'  

On carbon t a r g e t s  Radvanyi and Genin 25 found about t e n  t imes as 

Genin -- e t  al.24 a l s o  found about 1% as many deuterons 

Roos14 found a similar f r a c t i o n  of deuterons i n  p i l o t  

The deuteron spec t r a  are usua l ly  conceived as combi- 

Detai led t h e o r e t i c a l  es t imates  of expected spec t r a  have been obtained 

by t h e  cascade-plus-evaporation model discussed i n  Sect ion V I ,  combined 

with the  o p t i c a l  model f o r  e l a s t i c  s c a t t e r i n g .  I n  t h e  higher  energy region 

and f o r  favorable  angles,  Born approximation es t imates  on t h e  bas i s  of a 

s ing le  c o l l i s i o n  have a l s o  been made t o  r e l a t e  t he  peak width of t h e  quasi- 

f r e e  sca t t e red  spectrum t o  the  nucleon momentum d i s t r i b u t i o n .  

While the  present  work su f fe r s  from poor energy r e so lu t ion  and lack  

of p a r t i c l e  discr iminat ion,  it does combine spec t r a  a t  seve ra l  angles f o r  

t a r g e t s  o the r  than carbon with c a r e f u l l y  es t imated energy response which 

reaches down t o  20 MeV, lower than i n  o the r  experiments responsive t o  t h e  

h ighes t  energy protons.  The r e s u l t s  bear  on the  question of the  range of 

v a l i d i t y  of the simple quasi-free model and i t s  e labora t ions  through t h e  

cas cadet-plus - evaporat ion model. 

11. APPARATUS 

The Basis of the Flight-Time Spectrometer ---- 
The d i f f e r e n t i a l  cross  sec t ions  repor ted  here  were obtained with t h e  

use of a f l i gh t - t ime  spectrometer based on t iming me,asurements with p l a s t i c  

and l i q u i d  s c i n t i l l a t o r s .  Figure 1 i s  a schematic view of t he  de t ec to r  

arrangement. The t a r g e t  and de tec tors  were mounted i n  a i r ,  s ince  i n  a i r  

160-MeV protons lo se  only - 1 MeV i n  t he  l eng th  of our apparatus and 

s ince the  t a rge t s  t h a t  were used a re  much (- 20 t imes)  t h i cke r  than t h e  

27 

28 
P .  F .  Cooper, Jr., and R. Wilson, Nucl. Phys. 15, 373 (1960).  
W .  N .  Hess and B. J. Moyer, Phys. Rev. 101, 337(1956).  - 
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amount of air t h a t  t he  secondary-proton de tec tor  i s  ab le  t o  "see". 

experiments were performed a t  a very low beam s t rength ,  spec i f i ed  below, 

so t h a t  t h e r e  w a s  only a s m a l l  chance t h a t  two protons would appear i n  

t h e  beam within a - 40 nsec rf period. This allowed counters A and A' 

of Fig.  1 t o  de tec t  ind iv idua l  protons.  The f l i g h t  time w a s  measured 

between t h i s  de tec t ion  of a primary proton and the  occurrence of a pulse  

i n  counter B'. 

i n  counter B' and stopped by the  corresponding delayed pulse  from de tec to r  

A . )  
i s  t o  be recorded. 

These 

(Actually,  a l i n e a r  time base i s  i n i t i a t e d  by t h e  pulse  

A coincident pulse  i n  t h e  C' de t ec to r  i s  requi red  if the  f l i g h t  time 

The f l i g h t  paths  used i n  these  experiments were 90 and 70 cm, and a 

150-MeV proton requi res  only 6 nsec t o  t r a v e r s e  t h e  former f l i g h t  path.  

With t h e  approximately 1-nsec r e so lu t ion  ava i l ab le ,  good energy 

r e so lu t ion  was not expected a t  t he  h ighes t  energ ies .  

s e n s i t i v i t y  was s e r i o u s l y  compromised by energy loss i n  t h e  apparatus.  

A proton leaving the  t a r g e t  with 13 MeV could j u s t  be de tec ted  i n  counter 

B', having j u s t  the  &MeV energy a t  the  de t ec to r  needed t o  overcome the  

standard b i a s  used. If  t h i s  proton had o r ig ina t ed  i n  a r eac t ion  a t  t h e  

s ide  of t h e  t a r g e t  f a r t h e s t  from t h e  de t ec to r ,  it would have s t a r t e d  a t  

about 25 MeV. 

A t  low energies  t h e  

Def in i t ion  of t he  Proton Beam -- - 
The proper t ies  of the  beam of the  Harvard synchrocyclotron have been 

29 described i n  some d e t a i l  elsewhere, and our Lse of it at  low beam 

The cyc lo t ron  w a s  ad jus ted  t o  5,30 s t rength  has  a l so  been discussed.  

y i e l d  an average proton beam of about 5 x lo4 protons/sec on t h e  t a r g e t ,  

with an observed quadratic gross  duty f a c t o r  of about 2%. 

cur ren t  averaged over a per iod such as 10 psec, t he  quadrat ic  gross  duty 

f a c t o r  i s  defined5 as ? /(i2).) 

(If i i s  the  

a -  
Since the  beam occurs only i n  s h o r t  

"'R. T .  Santoro e t  a l . ,  Space, Time and Energy D i s t r i b u t i o n  -- of t h e  -- - - 7 -  
Proton from the Harvard Universi ty  Synchrocyclotron, ORNL-3722 (January 
1965)r-- - - .  

R .  T.  Santoro and R .  W .  Pee l l e ,  Measurement of t h e  I n t e n s i t y  of 30  - -- a Proton Beam of the  Harvard Univers i ty  Synchrocyclotron - f o r  Energy- 
Spec t r a l  Measurements - of NuclFar Secondaries,  ORNL-3505 p.  3 8 ' m h  
- --- 
m 
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(1 t o  4 nsec)  pu lses  separated by t h e  - 43 nsec rf per iod  of t he  acce ler -  

a t i n g  vol tage,  t h i s  implies on t h e  average 0.12 inc ident  protons per  rf 

microburst  during the  gross (l$ psec)  bu r s t  induced by the  frequency 

modulation. However, t h e  behavior of t h e  machine w a s  not so simple and 

r egu la r  a s  suggested by t h i s  average value.  

A s  described2g previously,  t h e  beam at  t h e  t a r g e t  was l a r g e l y  con- 

t a i n e d  wi th in  a &-in.  - d i m  spot generated by mul t ip le  Coulomb s c a t t e r i n g  

i n  t h e  ion iza t ion  chambers used here  f o r  a u x i l i a r y  beam monitoring. 

p o s i t i o n  s t a b i l i t y  during the  one-day i n t e r v a l s  between adjustment was 

about 1 m. The beam energy, based l a r g e l y  on range m e a s ~ r e m e n t s , " ~  was 

about 158.9 MeV as  it entered  the  t a r g e t ,  and so w a s  approximately 

158 1MeV a t  t h e  po in t  of i n t e r a c t i o n  i n  a t a r g e t  3 t o  5 MeV th ick ,  

depending on t h e  t a r g e t  angle .  

experiments was dominated by t h i s  t a r g e t  thickness ,  s ince  a stud?' of 

t h e  experimental  range curves p laces  a l i m i t  of something l i k e  1 M e V  on 

t h e  n a t u r a l  energy v i d t h  o f  the  inc ident  beam. 

Beam 

The beam energy spread during these  

I n  t h e  paragraphs below are  discussed t h e  use of t h e  coincident  p a i r  

of counters ,  denoted by A and A', t o  d e t e c t  t h e  presence of i nd iv idua l  pro- 

k n s  i n  t h e  beam, determine t h e i r  s u i t a b i l i t y  f o r  f l i gh t - t ime  spectroscopy, 

and g ive  the  t i m e  02 passage thrzug5 c o u ~ t e r  4.. T27_es~ p o i n t s  were d i s -  

cussed i n  more d e t a i l  p r e v i ~ u s l y , ~ ' ~ ~  p a r t l y  i n  connection w i t h  a discus-  

s ion  of the  c a l i b r a t i o n  of the beam monitor ion chambers. To assure  

unambiguous i d e n t i f i c a t i o n  of the f l i g h t  time of an ind iv idua l  secondary, 

it w a s  e s s e n t i a l  t h a t  only one proton pass through counters A and A '  

dur ing t h e  time period required for  a f l i gh t - t ime  measurement. This 

" i s o l a t i o n  in t e rva l "  w a s  se t  a t  110 nsec, implying t h a t  two rf-induced 

f i n e - s t r u c t u r e  b u r s t  pos i t ions  on e i t h e r  s i d e  of one p o s i t i o n  containing 

an acceptable  proton had t o  be "empty." Pulse  p i leup  events,  wherein 

two or  more protons occupied t h e  same f i n e - s t r u c t u r e  b u r s t  pos i t i on ,  

also had t o  be r e j e c t e d  because they  would tend t o  degrade the  time 

r e s c h l t . i o n  of the  system if the f i n e - s t r u c t u r e  bu r s t s  were wider than  

1 nsec. 

Figure 1 shows the  beam counter  geometry, and Fig.  2 t h e  block 

diagram of t h e  overall-beam-handling apparatus.  The two t h i n  s c i n t i l -  

l a t i o n  counters A and A' a r e  shown t o  be interposed i n  t h e  proton beam 
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before it s t ruck  t h e  t a r g e t .  (The counters were designed by V .  McKay 

and H. Brashear of t h e  Ins t rmlenta t ion  and Controls Division, as  were 

a l l  t h e  de tec tors  used i n  these experiments.)  

The proper t ies  of t h e  nanosecond c i r c u i t  elements used throughout 

t h e  e l ec t ron ic  apparatus have been described by H i l l  e t  al.31 The out- 

pu ts  of t h e  counters %'ere coupled by a p a i r  of independent coincidence 

and log ic  systems. The f a s t e r  s y s t e m  (designed l a r g e l y  by N .  W .  H i l l ,  

Instrumentation and Controls Division) used cur ren t  pulses  from the  

photomult ipl iers  and was capable of responding t o  c lose ly  spaced coinci-  

dences (10 nsec) ,  l a t e r  r e j e c t i n g  any events i n  which two protons were 

spaced by l e s s  than t h e  p re se t  t t i so la t ion ' t  i n t e r v a l .  The o ther  system 

(designed l a r g e l y  by R .  J. Scroggs, Instrumentation and Controls Division), 

l abe led  i n  F ig .  2 as "Pulse Pi leup Detectingtt  used charge pulses  and 

employed discr iminators  and a second coincidence c i r c u i t  t o  recognize 

p i l eup  events .  Provis ions were made t o  record the  number of pulses  

reaching each important po in t  I n  the  c i r c u i t .  

-- 

Figure 3 shows a comparison of t he  charge spectrum of pulses  from 

de tec to r  A, f o r  a beam s t rength  of a f e w  hundred protons per  second, 

w i t h  t h e  energy-loss d i s t r i b u t i o n  estimated by using the  formulation of 

Symons."" 

pulse-height s ca l e  normalized t o  give the  pred ic ted  mean energy loss, 

neglect ing da ta  above 0.9 MeV. Curve A i s  t h e  normalized predic ted  

energy-loss d i s t r i b u t i o n  folded with a normal d i s t r i b u t i o n  t o  represent  

the  de t ec to r  r e so lu t ion .  The standard devia t ion  of t h e  normal d i s t r i -  

bution was chosen by comparing t h e  second moments of t h e  energy-loss 

spectrum and the  po r t ion  of t he  da t a  below 0.9 MeV. 

experimental d i s t r i b u t i o n  has g rea t e r  i n t e n s i t y  than t h e  predicted one. 

'- - ------ n - 7 1  ra -hpi  rsht spectrum with t h e  ,. The poin ts  show m e  0usC.l Y=,c? 

Above 0.9 MeV t h e  

A s  shown i n  F ig .  2, f a s t  cur ren t  pulses  from de tec tors  A and A' 

were f e d  t o  tunnel-diode univ ibra tor  discr iminators  biased a t  a de tec tor  

energy l o s s  of 150 t o  200 keV. A tunnel-diode coincidence c i r c u i t  with 

a 2-nsee resclvlng t S m e  determined t h a t  a given proton had passed through 

31N. W .  H i l l  e t  a l . ,  Performance Charac t e r i s t i c s  of Modular - Nano- 

32K. R .  Symons, Fluctuat ions i n  Energy -- Lost by High Energy Charged 
Thesis,  Harvard University=. 

second C i rcu i t ry  m T l G i n g  Tunnel Diodes, ORNL-3687 (1%4]- 

P a r t i c l e s  i n  Passing Through M a t t e z  
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both counters.  Delayed coincidence curves such as those i n  Fig.  4 sug- 

g e ~ t ~ ~  t h a t  t h i s  c i r c u i t  usual ly  operated with a coincidence e f f i c i ency  

we l l  i n  excess of 9 9 .  
10 nsec; so two protons i n  t h e  same rf microstructure  b u r s t  were not  

resolved, while those accelerated i n  successive rf periods always gene- 

r a t e d  coincidence outputs .  The s c a t t e r  i n  t h e  experimental po in ts  i n  

F ig .  4 i s  bel ieved t o  have been caused by s m a l l  inaccuracies  i n  some of 

t h e  delay cables  used. 

The dead time of t h e  univ ibra tors  w a s  about 

It w a s  necessary f o r  t h e  pulses from t h i s  fas t  (AA') coincidence t o  

survive the  i so l a t ed  s igna l  system and t h e  pulse  p i l eup  ant icoincidence 

i n  order f o r  any detected secondary p a r t i c l e  t o  be s tored .  The i s o l a t e d  

s i g n a l  system shown i n  Fig.  5 was constructed using tunnel-diode c i r c u i t  

elements and w a s  adjusted t o  e l t h i n a t e  from a t r a i n  of pulses any p a i r s  

o r  mult iples  f a l l i n g  within 110 nsec of each o ther .  I n  t h e  l i m i t  of no 

3 dead t i r e s  o r  c i r c u i t  delays,  t he  synchronizing delays D1, D2, and D 

would be unnecessary and t h e  pulse s torage delays would be s e t  a t  t h e  

des i red  i s o l a t i o n  i n t e r v a l  (110 nsec i n  t h i s  case) .  

input  pulse  f i r e d  both b inar ies  and r e s e t  them a t  the  end of t he  i s o l a t i o n  

time, giving an output v i a  the " t r a i l i n g  edge coincidence." If two pulses  

were too c lose ly  spaced, t h e  cecnnr7 piilse was eliminated because b inary  

I could not be r e s e t  by the  second pulse  when t h e  f i r s t  had a l ready  r e s e t  

it, and t h e  f i r s t  pulse  was eliminated by t h e  second through the  e a r l y  

r e s e t  of b inary  11, v i a  t h e  ' ' reset  coincidence." 

delays were important, binary dead times were about 5 nsec, and t h e  r e s e t  

and output coincidence c i r c u i t s  had a resolving time of about 3 nsec.  

C i rcu i t  behavior with more complex pulse  t r a i n s  i s  d i f f i c u l t  t o  descr ibe ,  

but t he  instrument was t e s t ed  with quadruple pulses .  While t h e  l o g i c  

i l l u s t r a t e d  i n  F ig .  5 i s  believed t o  be adequate, t he  resolving t imes of 

the  included coincidence c i r c u i t s  sometimes caused malfunctions of t he  

equipment during t h e  r e l a t i v e l y  infrequent  pulse  t r a i n s  having pulses  i n  

fmr nr more successive f ine - s t ruc tu re  b u r s t s .  

A na tu ra l ly  i s o l a t e d  

P r a c t i c a l  c i r c u i t  

m e  pulse  p i leup  detector  (lower center  of F ig .  2 )  was used t o  

i d e n t i f y  those r f  periods i n  which two o r  more protons occurred. m e  

33R. W .  Pee l le ,  Nucl. I n s t r .  Methods - 29, 293-298 (1964). 
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input charge pulses were double-delay-line clipped using 25-nsec l i n e s  

so  t h a t  protons too  c lose  together  t o  be resolved by t h e  f a s t  s c a l i n g  

system would appear as one l a r g e  pulse .  

introduced a variance Proport ional  t o  the  energy loss  i n  t h e  phosphor, 

F ig .  3 shows an estimate of t h e  d i s t r i b u t i o n  of pulse  he igh t s  which 

should resul t  from "double" events involving two protons i n  t h e  same 

f ine - s t ruc tu re  i n t e r v a l  (curve B ) ,  based on the  observed r e s o l u t i o n  f o r  

s i n g l e  events and t h e  predicted energy-loss d i s t r i b u t i o n  f o r  two protons 

simultaneously pene t r a t ing  1 mm of p l a s t i c  phosphor. 

da t a  could be obtained f o r  comparison, bu t  osci l loscope observations 

tended t o  confirm t h e  a n a l y s i s .  Figure 3 also shows t h a t  no p i l eup  d i s -  

criminator s e t t i n g  can e f f e c t  a complete sepa ra t ion  of s i n g l e  and p i l eup  

events, bu t  t he  d i s t r i b u t i o n s  shown can be in t eg ra t ed  t o  ob ta in  f o r  each 

de tec to r  ( A  and A ' )  a r e l a t i o n  between s ing le s  and p i l eup  e f f i c i e n c i e s  

such as t h a t  shown i n  F ig .  6 .  
individual  detectors ,  t h e  pi leup discr iminators  on both A and A' channels 

were set  f o r  single-event counting e f f i c i e n c i e s  of about 0.03, and t h e  

discr iminator  output s i g n a l s  were placed i n  coincidence. The e f f i c i e n c i e s  

a t  t he  output of the  pi leup coincidence c i r c u i t  are roughly t h e  square of 

t he  individual  values;  so an o v e r a l l  p i l eup  d e t e c t i o n  e f f i c i e n c y  of about 

90% could be maintained while counting only 0.1% of t h e  s i n g l e  events .  

The e n t i r e  pi leup discr iminator  and coincidence system was b u i l t  with 

longer dead times than t h e  fas t  coincidence system, allowable because 

t h e  discr iminators  were set  t o  count less  than one-tenth of t he  proton 

pulses .  The input c i r c u i t r y  had t o  be capable of handling t h e  f u l l  ra tes  

without appreciable base- l ine and gain s h i f t s .  

Assuming t h a t  t he  beam de tec to r  

N o  experimental  

To overcome t h e  inadequate r e s o l u t i o n  of 

A s  f a r  as t h e  spectroscopy of secondary r a d i a t i o n s  w a s  concerned, 

t he  only important pulses  were those which appeared as " i so l a t ed"  s i g n a l s  

and which were not recognized as pu l se  p i l eups .  Others d i d  not l e a d  t o  

a recorded time i n t e r v a l  and were not  recorded i n  t h e  ISONPP s c a l e r  as 

being p a r t  of t he  beam. The remaining s c a l e r s  assoc ia ted  with t h e  beam- 

handling apparatus were employed t o  assess t h e  reasonableness of t h e  

operat ion of the equipment, t o  he lp  c a l i b r a t e  t h e  beam monitor ion cham- 

bers ,  and t o  provide a c e r t a i n  redundancy of information i n  case of 
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f a i l u r e  of a s c a l e r .  Use of the  apparatus f o r  t hese  a u x i l i a r y  purposes 

i s  d e t a i l e d  elsewhere. 

The Telescope f o r  Secondary Protons 

I n  order  t o  be detected,  a secondary charged p a r t i c l e  had t o  pene- 

- - 

t r a t e  de tec tor  C '  of F ig .  1 (0.05 em of p l a s t i c  phosphor, 4 i n .  i n  d i m -  

e t e r ,  covered by 6 t o  10  mg/cm2 of Ai), t r ave r se  an a i r  pa th  of 30 t o  

50 em, and f i n a l l y  en te r  de t ec to r  B' (0.5- by 5-in.-diam p l a s t i c  phosphor, 

covered l i k e  C' ) . These components formed t h e  secondary-proton te lescope,  

with a (B'C') coincidence requi red  t o  i d e n t i f y  charged secondaries .  

de t ec t ion  b ias  on t h e  fas t  component of the  pulse  from B' w a s  s e t  a t  a 

value corresponding t o  a 1.3-MeV e lec t ron;  a 4-MeV proton should produce 

the  same amount of l i g h t .  

The 

A (B'C') delayed-coincidence t e s t  curve obtained during the  experi-  

ment i s  displayed i n  F ig .  7 .  
( 2 7 )  resolving time i s  es t imated t o  have been l e s s  than  1% of the  t r u e  

coincidence r a t e  i n  a l l  cases ,  and i n  tu rn  only  a f e w  of t hese  random 

events could have come i n  the  proper time r e l a t i o n  t o  a beam proton.  The 

curve shown i n  F ig .  7 was obtained by using 160-MeV protons from the  beam, 

and implies a coincidence e f f i c i e n c y  of about 98% a t  t h e  po in t  noted f o r  

t h e  s tandard s e t t i n g .  The t iming becomes more favorable  f o r  protons of 

lower energy, and the  time corresponding t o  the  slowest proton de tec ted  

i s  shown approximately i n  F ig .  7 .  

The random coincidence r a t e  with the  24 nsec 

Noise dominated the  urigated spectrum of t o t a l - l i g h t  pu lses  from 

de tec tor  C'; Fig. 8, however, shows spec t r a  from d e t e c t o r  C '  i n  co inc i -  

dence with pulses  i n  de t ec to r  B' and i n  coincidence with a s i g n a l  from 

t h e  beam counters, both produced by t h e  160-MeV proton beam passing 

sequen t i a l ly  through the  cen te r  of each d e t e c t o r .  

ment between the  spec t ra  i s  taken t o  imply t h a t  t he  threshold  on the  fas t  

cur ren t  s i g n a l  from C '  was s e t  s u f f i c i e n t l y  low t o  count a l l  protons.  

Larger pulses  were observed from protons of lower energy o r  those  s t r i k -  

ing de tec to r  C' away from i t s  ax i s .  

i n  de tec tor  B' from monoenergetic protons were c lean  and unambiguous, 

though protons s t r i k i n g  the  per iphery  of t he  counter ' s  f a c e  produced 

pulses  2% smaller than  those produced by protons s t r i k i n g  near t he  

The gene ra l  agree- 

By con t r a s t ,  t h e  pulse  d i s t r i b u t i o n s  
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center .  Figure 9 i l l u s t r a t e s  the t o t a l - l i g h t  pu lse  d i s t r i b u t i o n  f o r  

protons s t r i k i n g  t h e  center  of t he  f a c e  of detec-tor B'. 

The te lescope described did not provide much pro tec t ion  aga ins t  

de tec t ion  of secondary charged p a r t i c l e s  o the r  than protons, bu t  d id  

provide sure  discr iminat ion against  neutron and gamma-ray de tec t ion  

through t h e  thinness  of C' and t h e  spacing of it from de tec tor  B O .  

deuteron from t h e  t a r g e t  which could reach B' would have counted i n  the  

(B'CO) coincidence c i r c u i t .  This d i f f i c u l t y  i s  ser ious  because of ev i -  

dence from other  work14* 24-28 t h a t  deuteron production i s  sometimes im- 

po r t an t .  Considering the  energy lo s ses  i n  the  apparatus and t h e  t a r g e t ,  

var ious p a r t i c l e s  would have been de tec ted  as shown i n  Table 1. The 

b i a s  thresholds  i n  de tec tor  B' f o r  t h e  various p a r t i c l e s  and t h e  equiva- 

l e n t  proton energies  were approximated very roughly. 

A 

The angular reso lu t ion  of the  te lescope  w a s  governed by t h e  geometry 

of t he  de t ec to r  and by multiple s ca t t e r ing ,  l a r g e l y  i n  the  t a r g e t .  All 
runs f o r  10  and 30' sca t t e r ing  angles were made with the  12-cm-diam 

de tec to r  about 90 cm from t h e  t a r g e t ,  while runs a t  wider angles were 

made a t  a 70-cm dis tance .  I n  near ly  a l l  cases  t h i s  f 3 o r  4' angular 

spread domir?ated t h e  reso lu t ion .  However, f o r  t he  lowest energies  observ- 

ed t h e  r e so lu t ion  w a s  d f e c t i v c l y  ~ ? Z ~ P I S P ~  by t h e  mult iple  Coulomb 

s c a t t e r i n g  i n  t he  t a r g e t  m a t e r i a l .  Table 2 l i s t s  the approximate rms 

(pro jec ted)  s c a t t e r i n g  angles f o r  t h e  lowest secondary proton energies  

important i n  each of t h e  f i r s t  few energy b ins  f o r  various t a r g e t s .  The 

t a b l e  includes only  cases f o r  which t h e  estimated rms mul t ip le -sca t te r ing  

angle i s  g r e a t e r  than the geometrical r m s  s c a t t e r i n g  angle of 0.03 rad ian  

( f o r  t he  appropriate  90-cm f l i g h t  pa th ) .  For g rea t e r  s ca t t e r ed  energies ,  

l i g h t e r  t a r g e t  materials, or  sho r t e r  ta rge t - to-de tec tor  dis tances  t h e  

geometrical  r e so lu t ion  given above becomes increasingly dominant. The 

values i n  Table 2 were ac tua l ly  computed for secondary p a r t i c l e s  o r i g i -  

na t ing  i n  t he  center  of t h e  t a r g e t s  f o r  secondary proton energies  chosen 

zt t h e  I m e r  edge of each energy b i n  included. 

The o v e r a l l  de t ec t ion  e f f i c i ency  of t h e  te lescope was c lose  t o  u n i t y  

f o r  those protons which l e f t  t h e  t a r g e t  toward any point  i n  de tec tor  B O ,  

corresponding t o  the  s o l i d  angle used i n  obtaining zero-order cross  

sec t ions .  The various possible  d i s tu rb ing  e f f e c t s  were canvased t o  
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These protons l o s e  about 6 .0  MeV i n  de t ec to r  B'. 
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Table 1. Detection Ranges f o r  P a r t i c l e s  Other Than Protons 

i n  the  Secondary Charged P a r t i c l e  Telescope f o r  a 0.5 g/cm2 

Carbon Target with I t s  Normal Toward the  Detector.  

Energy of Equivalent Protona (MeV) 
P a r t i c l e  Minimum Energy fo r  P a r t i c l e  a t  Minimum P a r t i c l e  a t  

Type Detection (&V) Energy 160 MeV 

Proton 12.6 - 25 
21 - 36 

Hb 30 - 46 

b Deut.eron 

He 44 - 88 
He 70 - 100 

12.6 - 25 
12.6 - 25 
13.2 - 26 
12.3 - 25 

78 
51 
48 
35 

'%'or each p a r t i c l e  and energy t h e  "equivalent proton" would y i e ld  
pulses  i n  t h e  s m e  t i x e  region f o r  a 9O-cm f l i g h t  path.  Where a range 
c?f e ~ e r g i e r  is 5ive.n; t he  two values  r e f e r  t o  secondaries produced a t  
t h e  f r o n t  and the  rear of t he  t a r g e t ;  otherwise, the energies  r e f e r  t o  
secondaries produced a t  t h e  t a r g e t  midplane. 

these  cases the  threshold i s  determined by t h e  m a x i m u m  f l i g h t -  
t ime considered, while i n  t he  remaining cases the  de tec tor  threshold 
governs. 
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Table 2. Estimated r . m . s .  P ro jec ted  Mult iple  Coulomb Sca t t e r ing  
Angle from Target-Scat ter ing f o r  Typical  Runs a t  30' Sca t t e r ing  
Angle, Assuming a Normal Angle Frequency Function. 

Energy of Protons r .m. s . Projec ted  
Target Bin Energy Leaving Target Mult iple  Sca t t e r ing  

Mater ia l  (MeV 1 (MeV 1 Angle ( r a d i a n )  

Bi 20.6 
27.2 
35 -6 
48.8 

co 21.5 

29.4 
38.2 

A 1  20.8 
28.6 

C 21.5 

13.2 
21.5 
31.0 
40.0 

13.1 

23 -5 
33 .o 

13.1 
22.5 

13.2 

0.13 
0.09 
0.07 
0.036 

0.08 

0.05 

0.036 

0.053 
0.031 

0 * 033 

. 
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determALie which cause- e f f i c i ency  degradation by as  much as a f r a c t , m  

of a percent .  A rough energy dependence w a s  es t imated f o r  each s i g n i f i -  

can t  e f f e c t .  For each run a t ab le  of t he  combined e f f i c i ency  f a c t o r s  

w a s  consulted i n  order  t o  make an energy-dependent correct ion.  A l i s t  

of t he  cor rec tab le  items follows: 

1. Analyzer counting losses  amounted t o  from 0.14 t o  2.2$, no 

energy dependence. 

2. Nonelastic i n t e rac t ions  i n  the  t a r g e t  weaken t h e  primary beam 

from 0.2 t o  0.5%. 
t i o n  i n  t h e  t a r g e t ,  from 0.2 to  0.5% a t  h ighes t  energies  up t o  0.3 t o  

1.6$ a t  lowest energ ies .  

The secondary beam su f fe r s  an energy-dependent absorp- 

3. Nuclear s c a t t e r i n g  i n  t h e  components of t h e  te lescope var ied  

from 1.3% f o r  20-MeV secondaries t o  0.7% a t  60 MeV and 0.5% a t  160 MeV. 

4. (B'C') coincidence losses  were est imated t o  vary from 0% below 

40 MeV t o  1% a t  100 MeV and t o  2% above 140 MeV. 

5 .  Mult iple  s c a t t e r i n g  i n  de t ec to r  C' w a s  most ser ious i n  t h e  da ta  

obtained a t  lo", and is estimated t o  have produced lo s ses  the re  up t o  

1.75 i n  t h e  lowest energy b in .  

t h e  30" data .  

The co r rec t ion  was ha l f  t h i s  l a r g e  f o r  

I n  both cases a t  30 MeV and above t h e  cor rec t ion  i s  below 

G . 6 .  

The combined cor rec t ions  from t h e  above sources ranged from 2 t o  

~n o v e r a l l  unce r t a in ty  of 1.5% i n  e f f i c i e n c y  w a s  assigned t o  cover 5%. 
t h e  combined cor rec t ion ,  bu t  was not assigned an energy dependence. 

Flight-Time Measurement 

Fl ight- t ime measurements were made using a time- to-pulse-amplitude 

converter  designed by F. M. Glass (Instrumentat ion and Controls Div is ion) .  

A s  our o the r  fas t  c i r c u i t r y ,  t h i s  u n i t  employed tunne l  diode input  uni-  

v ib ra to r s  as t h i n g  c i r c u i t s .  The - % psec pulse  a t  t h e  output had i t s  

amplitude l i n e a r l y  r e l a t e d  t o  t h e  time d i f fe rence  between "start" and 

"stop" inputs .  

u n i t  were good, but  t he  d i f f e r e n t i a l  l i n e a r i t y  proved t o  be troublesome. 

Figure 10 shows a d i f f e r e n t i a l  l i n e a r i t y  curve (obtained using random 

"stop" s i g n a l s )  which i l l u s t r a t e s  t h e  d i f f i c u l t y .  

curve r e f e r  t o  t h e  time range employed i n  t h i s  experiment. 

The i n t e g r a l  long-range l i n e a r i t y  and s t a b i l i t y  of t h e  

The s o l i d  p a r t s  of t h e  

Baseline 
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Fig .  10. A Typical D i f f e r e n t i a l  L inea r i ty  Curve Obtained by Using 
Random S t a r t  and Stop Pulses  i n t o  the  Time-to-Pulse Height Converter. 
The f luc tua t ions  were ignored i n  the  ana lys i s  of t h e  da ta ,  which only  
involved the  portions of the  curve from channel 130 through channel 190. 
Aside from counting s t a t i s t i c s ,  t he  ord ina te  for a given channel i s  pro- 
po r t iona l  t o  i t s  t r u e  time width. 
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s t a b i l i t y  was adequate for these proton r e su l t s ,  although the  s h i f t  of - 0.0005 nsec/cps produced d i f f i c u l t y  i n  o ther  experiments. 

I n  a l l  cases "zero" time was deduced from observations of  t he  appar- 

e n t  f l i g h t  time of beam protons through t h e  apparatus with t h e  de tec tor  

placed a t  zero degrees and the  cyclotron beam i n t e n s i t y  ad jus ted  t o  about 

500 protons/sec.  

over a series of runs requi r ing  a few hours.  Figure 11 i l l u s t r a t e s  such 

a t iming check, as w e l l  as the  system's i n t e g r a l  l i n e a r i t y ,  and exh ib i t s  

a time re so lu t ion  of about 1 nsec f o r  160-MeV protons.  

D r i f t s  of t h i s  time "zero" were about 0.2 t o  0.3 nsec 

The o v e r a l l  conversion gain of t h e  timing equipment was 0.468 nsec 

per  channel f l%, based on examination of t h e  r e s u l t s  obtained by two 

independent techniques: 

i t y  t e s t s ,  such as t h a t  p lo t t ed  i n  F ig .  10 which can y i e ld  an absolute  

measure of conversion ga in  provided t h a t  t he  "start" and "stop" r a t e s  

a r e  measured and a l l  counting d i f f i c u l t i e s  such as dead times are con- 

s idered .  A s e r i e s  of such runs under var ied conditions implied conver- 

s ion  gains i n  the  range 0.466 nsec pe r  c h a n n e l i  0.3%. 
c a r e f u l l y  cu t  RG9BU delay cables which yielded a c a l i b r a t i o n  depnd ing  

upon manufacturing to le rances  on t h e  s i g n a l  ve loc i ty  i n  t h e  cable .  

Eepr)_c?i_n,p on the ve loc i ty  value chosen, t he  delay cable yielded a conver- 

s ion  ga in  of 0.471 nsec per  channel, with an estimated unce r t a in ty  of 

0.5%. The uncer ta in ty  on t h e  chosen value seems generous, bu t  it has 

l i t t l e  e f f e c t  on t h e  o v e r a l l  e r r o r  es t imates .  A l l  t iming checks implied 

t h e  same conversion ga in  within f 0.5%. 

t i o n  d a t a  discussed above and shown i n  F ig .  11 a l l  employed a pulse  d i s -  

t r i b u t i o n  such as  t h a t  shown i n  F ig .  3 f o r  counter A and i n  F ig .  9 f o r  

counter B'. 

One technique w a s  based on d i f f e r e n t i a l  l i n e a r -  

The o the r  involved 

The time r e so lu t ion  and ca l ib ra -  

To assume t h a t  t h e  B' pulse d i s t r i b u t i o n  i s  constant  would be 

inadequate because the re  w a s  a pu lse  amplitude dynamic range of a t  l e a s t  

1 O : l  i n  counter B' wi thin t h e  u s e f u l  p a r t s  of t h e  time spectrum. 

Figure 12 shows t h e  r e l a t i o n  between the  l i g h t  output from counter B' 

and proton energy a t  t h e  f a c e  of t h a t  counter.  

absorbed MeV w a s  taken from the work of Evans and bell am^.^^ 
The l i g h t  output  per  

The peak 

34H. C .  Evans and R. H. Bellamy, Proc.  Phys. SOC. - 74, 483 (1959). 
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Fig .  11. Operation of t he  Time-Measurement System f o r  Monoenergetic 
Protons i n  t h e  Unscattered Beam. 
under 1 nsec f o r  such timing checks (r ight-hand o rd ina te  s c a l e ) .  
t y p i c a l  long-range i n t e g r a l  l i n e a r i t y  curve seems l i n e a r  t o  a s m a l l  f r a c -  
t i o n  of 1% i n  the  i n t e r v a l  i l l u s t r a t e d .  Very d e t a i l e d  i n t e g r a l  l i n e a r i t y  
checks showed f luc tua t ions  corresponding t o  those observed i n  t h e  d i f f e r -  
e n t i a l  check in  F ig .  10. 

The observed r e s o l u t i o n  width i s  s l i g h t l y  
The 

0 20 40 60 80 400 420 440 160 480 200 

PULSE-HEIGHT CHANNEL 



. 

1 1  I I I I I I I 

29 

0 20 40 60 80 io0 ( 2 0  i40 160 I80 200 220 240 
PROTON ENERGY AT THE FACE OF THE L?' DETECTOR ( M e V )  

Fig .  12. Energy Loss and Electron-Equivalent Light Output f o r  Protons 
Pene t r a t ing  t h e  Surface of Detector B' ($-in. Polystyrene-Based Phosphor). 



a t  about 38 MeV corresponds t o  the  energy f o r  which t h e  proton range i n  

polystyrene-based p l a s t i c  phosphor i s  j u s t  t h e  0.5-in. counter thickness .  

Figure 13 i l lcstrates t h e  pu l se  amplitude dependence of t h e  t i m e  measure- 

ment with t h e  equipment used, f o r  a constant t i m e  between phys ica l  events .  

The c losed -c i r c l e  po in t s  were obtained using degraded 160-MeV protons,  

while t h e  open-circle d a t a  were matched on from da ta  obtained a year l a t e r  

using t h e  same e l e c t r o n i c s  s i m i l a r l y  adjusted,  a 1- by 5-in.-diam l i q u i d  

s c i n t i l l a t o r  de tec tor ,  and pu l se  p a i r s  obtained i n  t h e  d e t e c t i o n  of alpha 
p a r t i c l e s  and t h e i r  a s soc ia t ed  neutrons from the  T(d, n)4He r e a c t i o n .  35 

The amplitude-dependent timing walk ( o r  slewing) i s  p l o t t e d  here  as a 

func t ion  of "overdrive," t h e  r a t i o  between t h e  amplitude of t h e  f a s t  cur- 

r e n t  pu l se  and t h e  minimum pu l se  capable of f i r i n g  t h e  t u n n e l  un iv ib ra to r  

a t  t h e  input  t o  the  time-to-amplitude converter .  It w a s  necessary t o  

choose an  a r b i t r a r y  t i m e  zero i n  matching t h e  two sec t ions  of t he  da t a .  

A combination of t h e  r e s u l t s  of F igs .  12 and 13 y i e lds  t h e  f i n a l  timing 

" w a l k "  curve of F ig .  14, i n  which t h e  major uncer ta in ty  i s  t h e  exact  B' 

pulse-height threshold employed during some of t h e  experiments a t  t h e  

"stoptt  input  of t h e  time-to-pulse-height converter.  It i s  seen t h a t  q u i t e  

s u b s t a n t i a l  correct ions were required near 40 MeV, where t h e  o v e r a l l  

f l i g h t  time was 1 0  t o  12 nsec. I n  a l l  t h e s e  s tud ie s  t h e  pu l se  spectrum 

from de tec to r  A i n t o  the  "stop" input of t h e  time-to-amplitude converter 

w a s  he ld  f ixed ,  while t h e  apparent t i m e  d i f f e rence  between "s ta r t "  and 

"stoptt  pulses  was observed f o r  var ious energy lo s ses  i n  d e t e c t o r  B'. 

The da ta  of Fig.  14, f i t t , e d  with t h e  i l l u s t r a t e d  s t r a i g h t  l i n e s ,  

were employed d i r e c t l y  i n  t h e  d a t a  ana lys i s  t o  convert  t h e  d i f f e rence  i n  

t i m e  between observed pulses  i n t o  an i n f e r r e d  time d i f f e rence  between 

events .  This was possible  because each apparent f l i g h t  time corresponded 

t o  a narrow band of energies  a t  t h e  f ace  of d e t e c t o r  B'. The e r r o r  i n  

t h e  timing w a l k  co r rec t ion  was taken as 25% of t h e  d i f f e rence  from t h e  

value a t  158 MeV, where t h e  rou t ine  timing checks were performed during 

t h e  experiment. 

T .  A .  Love e t  a l . ,  Absolute Eff ic iency  Measurements of NE-213 3 5  - -- - 7- 
Organic Phosphors f o r  - t h e  E e t e c t i o n m n 2 . 6 u t r o n s ,  ORNL- 
3 8 9 3 n - i G a i x .  
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2-04 -058- 99 f 

0 DATA OBTAINED USING DEGRADED 

__ 

- 

160- MeV PROTONS 

0 DATA OBTAINED USING RECOIL 
PROTONS FROM 44-MeV NEUTRONS 

0 ! 2 3 4 5 
TIME SLEWING, ARBITRARY ZERO (nsec) 

Fig. 13. Time Slewing f o r  t he  Secondary Proton Detector.  Note t h a t  
t h e  time sca l e  appears t o  be reversed because the  de t ec to r  is at tached t o  
t h e  START c i r c u i t  of the  amplitude converter .  
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Fig.  14. Time Slewing as a Function of Proton Energy a t  t h e  Face of 
Results a r e  shown f o r  two values of t h e  pulse-height th res -  Detector B'. 

hold a t  the  input t o  the  t ime-to-pulse-height converter,  normally s e t  a t  
about 0.6 MeV e lec t ron  equivalent .  
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The Supervisory System I 
Figure 15 i s  a schematic flow diagram of the o v e r a l l  e l e c t r o n i c  

- 
I 

system, showing the  i n t e r r e l a t i o n  of t h e  beam-processing package, t h e  

te lescope  (B’C’ ) coincidence c i r c u i t ,  and the  time-to-amplitude converter 

through t h e  slow gat ing c i r c u i t  t o  t h e  information s torage i n  the  mult i -  

channel pulse-height analyzer .  This ga t ing  and s torage  i s  so arranged 

t h a t  if  an  event meets a l l  conditions for storage except a te lescope 

(B’C’) coincidence the  f l i g h t  time w i l l  be s tored  i n  a separa te  sec t ion  

of the  analyzer memory. 

I 

I n  summary, t he  following condi t ions must be met if a f l i gh t - t ime  

observat ion i s  t o  be stored: 
I I n  t h e  Beam Package: 

1. Simultaneous (+ 2 nsec)  pulses  a r i s e  i n  counters A and A‘, 

with amplitudes > 150 keV-equivalent. 

N o  o ther  coincident pulse  appears within 110 nsec of t he  

one of i n t e r e s t .  

Both A and A‘ do not  r e g i s t e r  pulses  above t h e i r  pulse  

p i leup  discr iminator  thresholds .  

The observed secondary p a r t i c l e  occurs wi th in  a reasonable 

Icterval (-X =:E, + 80 s1c.e~) of t h e  proton pulse  from 

counter A .  

I 

I 
2 .  

l 

3 .  

4. 

I n  t h e  (B’C’) Coincidence Ci rcu i t :  

1. The pulse  observed i n  de tec tor  B‘ has a l i g h t  output  

g rea t e r  than would be produced by an e l ec t ron  of - 1.3 MeV. 

The pulse  i n  detector  B’ follows within 25 nsec t h a t  obser- 

ved i n  de tec tor  C’ with b i a s  equivalent  t o  > 100 keV. 

2 .  I 

I 

I n  t h e  Time-to-Amplitude Converter: I 
1. A l l  pulses  which exceed t h e  threshold of c i r c u i t s  B’ and 

A y i e ld  a time-to-amplitude conversion provided t h a t  

ne i ther  i s  spaced wi th in  the  dead t i m e  of - 60 nsec from 

t h e  preceding pulse .  I f  no beam timing pulse  accompanies 

a B’ pulse  which i s  above the  “s tar t“  threshold,  t he  con- 

v e r t e r  y i e lds  a l a r g e  “se l f - s top”  pulse .  
I 
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I n  the  Slow Gating Circuit :  

1. The pulse from the  beam package i s  coincident (1 psec) with 

a (B'C') coincidence t o  give s torage as a proton. 

111. EXPERlMENTAL PROCEDURES 

Available time did not allow thorough coverage of t he  per iodic  t ab le  

o r  angle ranges. Table 3 shows the  cases f o r  which d i f f e r e n t i a l  cross 

sect ions w e r e  measured. The choices made were intended t o  i l luminate  the  

v a r i a t i o n  i n  the  d i f f e r e n t i a l  cross  sec t ion  vs t a r g e t  mass number and 

s c a t t e r i n g  angle. 

ground and were dominated by e l a s t i c  s ca t t e r ing ,  which dis turbed a very 

l a r g e  por t ion  of the  spectrum because of t h e  broad spectrometer reso lu t ion .  

Unfortunately the  10' d a t a  suf fered  from a l a rge  back- 

Tota l  f l i g h t  paths  were chosen as a compromise between counting rate 

and v e l o c i t y  reso lu t ion .  All 1 0  and 30' data  were obtained a t  89 em, 

while da ta  a t  o ther  angles were obtained a t  69 em. 

i n  accordance with t h e  demands made by the f l i g h t - t i m e  v a r i a t i o n s  between 

counters B' and C', the  need f o r  a l l  p a r t i c l e s  t o  t r a v e r s e  the  s l i g h t l y  

smaller counter C; and the  need a t  s m a l l  s c a t t e r i n g  angles t o  keep detec- 

t o r  C' out of t he  beam. 

w a s  posi t ioned t o  p r o t e c t  t h e  \b G a r r a y  irom ~ a r t i e k s  Tr, z ~.:Trg 

of the  beam. 

Detector C' was placed 

PA shield th ick  enough t o  s top  160-MeV protons 
/- '- ' \ 

Since energy loss  i n  t he  t a r g e t  by the  secondary p a r t i c l e  w a s  known 

t o  be a ser ious  l imi t a t ion ,  t a rge t s  were placed with t h e i r  normals as 

c lose  as poss ib le  t o  t h e  d i r e c t i o n  toward counter B'. 

Target-out backgrounds were measured once f o r  each se r i e s  of runs 

a t  a given de tec tor  angle. 

Lis ted below are  the  p r i n c i p a l  rou t ine  checks made t o  v e r i f y  the 

operat ion of t h e  spectrometer. 

assembly of t he  e l e c t r o n i c s .  The l i s t  i s  approximately i n  order  of 

decreasing frequency, ranging from once per  run t o  once per  day. 

Not included i s  t h e  genera l  checkout on 

_. 1 R o l i t i v e  coimting rates of beam sca le r s  were checked t o  assure  

reasonable cons i s  tency. 

2. Timing checks a t  zero degrees v e r i f i e d  the  zero-time value. 

During most such checks two o r  th ree  separa te  cable delays were 

employed t o  provide a check on the  system conversion gain 



Table 3. Target and Detector eonf igurat ions 
f o r  Which D i f f e r e n t i a l  Cross Sect ions Were 
Obtained. 

Target 10" 3 0" 45O 60' 90" 120° 

Be X 

C X X 

H2° 

D2° 
A1 

X 

X 

X X 

co X X 

Bi X X 

X 

X 

X 

X 

X 

X 

X X 

. '  

. 
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(nsec/channel) . 
mate te lescope e f f ic iency .  

These tes ts  automatical ly  checked the  approxi- 

3. B i a s  checks were performed on t h e  s e t t i n g  of the  counting th re s -  

holds f o r  t he  (B'C') coincidence c i r c u i t ,  t he  time-to-amplitude 

converter,  and t h e  beam package thresholds .  

The proton beam was al igned t o  the  t a r g e t  holder  and de tec to r  

pos i t ioner ,  using Polaroid f i lm .  

Coincidence c i r c u i t  resolving times were measured using t h e  

fu l l -energy  beam and va r i ab le  delay l i n e s .  

4. 

5. 

Table 4 summarizes the  estimated r m s  unce r t a in t i e s  of t h e  various 

experimental parameters important t o  t h e  da t a  ana lys i s ,  as ide  from t h e  

counting s t a t i s t i c s .  Where no range of values i s  indicated,  t h e  same 

est imates  were appropriate  fo r  a l l  runs.  

IV. ANALYSIS FOR DIFFERENTIAL CROSS SECTION 

Typical Raw Data 

Figure 16 shows a typ ica l  experimental f l i gh t - t ime  spectrum. The 

background w a s  s i m i l a r l y  small i n  most of t he  measurements f o r  s c a t t e r i n g  

angles of > 30".  The s o l i d  cwve approximates t h e  ava i lab le  experimental  

r e so lu t ion .  The arrows indicate  the  sec t ions  of iiie c-iii--E c s r r e s p c n d l n g  

t o  various secondary energies,  i l l u s t r a t i n g  t h a t  a t  t h e  higher  energies  

the  information i s  contained i n  very f e w  channels. 

Background Analysis - and Subtraction 

Since a t  lower secondary-proton energies  counts a re  spread over many 

channels because t h e  reso lu t ion  is  broad from ezergy l o s t  i n  t h e  t a r g e t ,  

analyzer time channels were combined i n t o  b ins .  

was made t o  depend on the  uncer ta in ty  i n  t h e  energy a t  b i r t h  of a proton 

giving r i s e  t o  a pulse  reg is te red  i n  t h a t  b in .  

ning process a r e  not consequential ,  bu t  t h e  reader  should r e a l i z e  t h a t  

p lo t t ed  poin ts  i n  t h e  following cross  sec t ion  graphs do not correspond 

t o  equal  f l i gh t - t ime  in t e rva l s .  

The width of each b in  

The d e t a i l s  of t he  bin- 

The nature of t he  proton de tec to r  i s  such as t o  imply t h a t  only the  

following backgrounds were important: 

1. deuterons o r  o the r  heavier secondary p a r t i c l e s  from the t a r g e t ,  
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Table 4. Estimated Standard Errors  f o r  Experimental 
Parameters Enter ing  i n t o  Analysis of Proton Data 

Beam energy 

Detector a rea  

Detector e f f ic iency  

Slewing cor rec t ion  

Time-to-amplitude conversion f a c t o r  

Zero of timing s c a l e  

Sca t t e r ing  angle 

F l i g h t  pa th  on cen te r  l i n e  

L a t e r a l  beam spot pos i t i on  

Surface dens i ty  of secondary 

Number of protons s t r i k i n g  t a r g e t  

Surface dens i ty  of t a r g e t  

proton te lescope 

Angle of t a rge t  normal 

f 1 . 0  MeVa 

0.4% 

1 .5% 
0.25 of cor rec t ion  r e l a t i v e  t o  
158 MeV 

1% 

0.5' 
0.1 t o  0.25 nsec 

0.3 em 

0.15 ern 

1.5 mg/cm2 

1 t o  $7 

0.3 t o  1.5% f o r  metal  t a rge t s ;  
3.5% f o r  t he  water t a r g e t  

0.5' 

?From measurements reported i n  R .  T.  Santoro e t  a l . ,  Space, Time 
and Energy Dis t r ibu t ions  of the  Proton Beam of t h e  Harvard Universi ty  
-- Synchrocyclotron, O R N L - 3 7 s  (January l9m - - 

-- -- 
- 
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ANALYZER TIME CHANNEL ( - 0 . 4 7  nsec/chonnel) 

Fig.  16. Raw Pulse-Height Spectra  from the  Time-to-Pulse-Height 
Converter for Secondary Charged P a r t i c l e s  from a 0.7-g/cm2 Co Target, 
Along with the  Corresponding Background. 
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2. beam protons s c a t t e r e d  i n  the  a i r  volume near the  t a r g e t ,  

3. protons from the  wings of the  beam s c a t t e r e d  i n  the  t a r g e t  ho lder .  

Since t h e  volume of the  t a r g e t  is s m a l l  compared with t h e  volume of a i r  

seen by t h e  de tec tor ,  s ince  the  c ross  sec t ion  f o r  i n t e r a c t i o n  i n  t h e  a i r  

i s  not much changed by the  few MeV l o s t  i n  the  t a r g e t ,  and s ince  t h e  

de t ec to r  s ing le s  r a t e s  were not much a f f ec t ed  by the  presence o r  absence 

of a t a r g e t ,  t h e  combined backgrounds 1 and 2 were determined by tak ing  

da ta  i n  the  standard manner with t h e  t a r g e t  removed. The r e s u l t i n g  back- 

ground spectrum was normalized according t o  the  r e l a t i v e  numbers of 

accepted beam protons i n  t h e  foreground and background runs and was sub- 

t r a c t e d  on a channel-by-channel b a s i s .  

I f  t he  above ana lys i s  i s  co r rec t ,  it should be poss ib l e  t o  analyze 

the  background t o  check the  p l a u s i b i l i t y  t h a t  it i s  caused e n t i r e l y  by 

a i r  s c a t t e r i n g .  Table 5 summarizes the  energy- in tegra l  c ross -sec t ion  

information obtained by t r e a t i n g  these  background da ta  on the  assumptions 

t h a t  the  proton beam was very concentrated,  t h a t  de t ec to r s  B' and C' had 

square r a t h e r  than c i r c u l a r  f aces ,  and t h a t  on ly  a i r  s c a t t e r i n g  con t r i -  

buted. I n  computing t h e  e f f e c t i v e  s c a t t e r i n g  volume of air ,  v a r i a t i o n s  

i n  de t ec to r  s o l i d  angle  were considered b u t  t h e  s c a t t e r i n g  c ross  s e c t i o n  

was assumed t o  be cons tan t  with angle over t he  de t ec to r  f a c e .  The re- 

s u l t s  a r e  expressed as  a r a t i o  t o  o 

sec t ions  0 were taken a s  0.23 barn f o r  carbon, 0.27 barn f o r  a i r ,  non 
0.44 barn f o r  aluminum, and 0.73 barn f o r  coba l t .  A t  30, 45, and 120" 

the  r e s u l t s  make t h e  a i r - s c a t t e r i n g  hypothesis  p l aus ib l e ,  while a t  10, 

60, and 90' the number of background protons seems t o  have been two t o  

s i x  times too  l a r g e .  

counters A and A'  as we l l  as t h e  a i r  volume could be seen by the  secon- 

dary-proton te lescope .  A t  60 and 90" t he  excess background presumably 

o r ig ina t ed  i n  the  t a r g e t  ho lder .  The t a r g e t  w a s  supported a t  i t s  edges, 

and the  grazing angle between t h e  t a r g e t  and t h e  beam was smal les t  f o r  

the  runs a t  60'. The measured backgrounds were i n  no case a source of 

d i f f i c u l t y ,  s ince  the  r e l a t i v e  background remained low (15%) even a t  60'. 

/4n, where the  none la s t i c  cross  no n 

At ,  10" t h i s  i s  l e a s t  s u r p r i s i n g  because p a r t  of beam 

The wide va r i a t ions  i n  f l i g h t  d i s t ances  wi th in  t h e  a i r - s c a t t e r i n g  

volume prevented de r iva t ion  of energy s p e c t r a  from t h e  background except 

a t  90', where there  were too  f e w  counts f o r  s p e c t r a l  a n a l y s i s .  One can 
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Table 5 .  Energy-Integral  Re la t ive  Cross Sect ions,  0 (91, P XgY 
Derived f o r  A i r  Sca t te r ing  from Target-Out BackgrounA 
a t  160 MeV, Compared with Resul t s  f o r  Carbon, Aluminum, and 
Cobalt  Targets .  

a ta  

S c a t t e r i n g  Background 
Angleb (deg)  ( A i r  ) Carbon Aluminum 

10 45 18 22 

30 4.0 3 - 4  3 -0 
45 2.6 2.3 
60 6 -9  1.2 

go 0.62 0.33 
120 0.23 

Cobalt 

25 
2.7 
2.2 

1.2 

0.37 
0.17 

5 a l u e s  are normalized aga ins t  t h e  est imated nonelas t ic  cross  

bThe angle between t h e  beam a x i s  and the  l i n e  jo in ing  the  centers  

s ec t ions  of Be r t in i ,  as g i v e n  i n  the t e x t .  

of t h e  t a r g e t  and t h e  sca t t e red  proton de tec to r .  
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observe i n  Fig. 16 t h a t  t he  background f l i gh t - t ime  spectrum resembles the  

foreground one. 

I n  t h i s  work e l a s t i c  proton s c a t t e r i n g  i s  t r e a t e d  as a background be- 

cause the  experimental r e s o l u t i o n  i s  so poor t h a t  e l a s t i c  s c a t t e r i n g  can 

spread counts over the  e n t i r e  p a r t  of t he  time spectrum corresponding t o  

b i r t h  energies  over 60 MeV. 

high-energy peak i n  t h e  da t a  was f i t t e d  by eye t o  t h e  expected time d i s t r i -  

but ion from e l a s t i c  s ca t t e r ing ,  allowing es t imat ion  of t h e  i n t e n s i t y  of 

t he  e l a s t i c  and nea r -e l a s t i c  cont r ibu t ion .  Table 6 compares observat ions 

made i n  t h i s  manner aga ins t  a n t i c i p a t e d  e l a s t i c  proton s c a t t e r i n g  based 

on optical-model es t imat ions using parameters based on s c a t t e r i n g  experi-  

ments a t  185 MeV. 

assigned t h e  optical-model values .  Some checks on the  o p t i c a l  ca lcu la-  

t i o n s  a r e  now ava i l ab le  i n  t h e  work of Roos14 a t  160 MeV, which unfortu-  

na te ly ,  however, a r e  not f o r  the  same elements. 

For the  da t a  obtained a t  10' t h e  apparent 

Agreement i s  moderate, depending on the  unce r t a in ty  

The experimental e l a s t i c  and n e a r - e l a s t i c  cross  sec t ions  l i s t e d  i n  

Table 6 were obtained by normalizing t h e  expected time d i s t r i b u t i o n  of 

pulses  from e l a s t i c  s c a t t e r i n g  t o  t h e  high-energy po r t ions  of t h e  time 

spec t r a .  (These cont r ibu t ions  were then subt rac ted ,  including t h e  appro- 

p r i a t e  l ow-ene rgy ta i l ,  t o  give the  segments of the  nonelas t ic  s p e c t r a  

displayed i n  Section V f o r  a 10' s c a t t e r i n g  ang le . )  

mates l i s t e d  i n  Table 6 were obtained (G. 

1964), by averaging over the  proton de tec to r  optical-model e s t  

based on extrapolat ions of f i t s  by Sa tch ler  and Haybron t o  t h e  d a t a  of 

Johannson -- e t  a 1  .' The nea r -e l a s t i c  da t a  from B e r t i n i ' s  i n t r anuc lea r  

cascade r e s u l t s ,  discussed i n  Sec t ion  V I ,  a r e  be l ieved  t o  be somewhat 

high f o r  the  0 t o  14' i n t e r v a l .  

The t h e o r e t i c a l  e s t i -  

Long, p r i v a t e  communication, 

Contributions from twofold s c a t t e r i n g  i n  t h e  t a r g e t  were not care-  

f u l l y  analyzed, bu t  should amount t o  1 t o  3%. 

Determination of t he  D i f f e r e n t i a l  Cross Sect ions -- - 
A l o c a l  average value of t he  d i f f e r e n t i a l  c ros s  s e c t i o n  CJ ( & e >  P,XPY 

can be computed corresponding t o  t h e  conten ts  C of t h e  k t h  analyzer  

t ime-b in: 

lar t o  those  of G.  R .  Sa tch ler  and R .  Haybron, Phys. L e t t e r  11, 303-5 
(1964), except t he  p o t e n t i a l  parameters were 5 t o  15% g r e a t e r  i n  magnitude. 

k 

36R. Haybron, p r i v a t e  communication. The parameters used were simi- 
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Table 6.  E l a s t i c  and Near-Elastic Sca t t e r ing  a t  10' 

D i f  P e r e n t  i a l  Cross Sections (mb/steradian) 

From In t ranuclear  From Averaged 
From Experiment a1 Cascade Near-Elastic Optical-Model 
E l a s t i c  and Near- Sca t te r ing  E l a s t i c  

(120-160 MeV) Sca t t e r ing  Target E l a s t i c  Sca t te r ing  

C 300 f loa 
A1 740 i 25 

co 1500 i 60 
B i  4800 f 200 

60 240 -f 20b 

87 740 f TOb 

115 1900 f 3OOb 
15  0 5900 f 1000b 

a- ~ Uncertairiiies l i s t e d  ilre t h n e  involved i n  the  absolu te  cross 
sec t ion  from the  given run along with a 3% normalizing uncer ta in ty .  
Counting s t a t i s t i c a l  unce r t a in t i e s  a r e  < 1%. 

These e r r o r  estimates a r e  based on unce r t a in t i e s  i n  the  averaging b 

process ( 3 - 1 6 )  and on a comparison between t h e  da t a  of Roos ( r e f .  14)  
and t h e  optical-model pred ic t ions  which were employed (10-26). 
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where 
- 
o =  k l o c a l  average d i f f e r e n t i a l  cross  sec t ion  corresponding t o  t h e  

counts C 

background-corrected number of counts i n  the  k t h  t i m e  b in ,  

energy width of t he  k th  bin,  

de t ec to r  s o l i d  angle subtended a t  t h e  t a r g e t ,  

number of protons pene t r a t ing  t h e  t a r g e t  during the  accumula- 

t i o n  of t he  C counts and s a t i s f y i n g  the  requirements of the  k 
c i r c u i t  l og ic ,  

number of t a r g e t  atoms pe r  em2, viewed along the  beam ax i s ,  

average e f f i c i e n c y  of t h e  te lescope f o r  protons over t he  

s o l i d  angle range AR and t h e  energy range A 

k' 

k '  
The next s e c t i o n  descr ibes  t h e  est imat ion of A and of t h e  energy k 

E with which 0 i s  associated.  The s o l i d  angle of de t ec to r  B' i s  taken 

a t  i t s  geometrical  value on i t s  f ace  c l o s e s t  t o  t h e  t a r g e t ,  with correc- 

t i o n s  as discussed i n  Section 11, "The Telescope f o r  Secondary Protons." 

The number of use fu l  protons i n  2 run was t h e  number adequately i s o l a t e d  

from neighboring protons, about 0.7 of t h e  t o t a l  number of protons pre- 

s e n t .  This number w a s  gene ra l ly  obtained from t h e  ISONPP s c a l e r  of F i g .  

15,  and an unce r t a in ty  was assigned on the  b a s i s  of t h e  degree of agree- 

ment among t h e  var ious beam-package counting r e s u l t s ,  compared by taking 

i n t o  account counting lo s ses  through a f i t t e d  model of t h e  beam t i m e  

s t r u c t u r e .  

model allowed reasonably p r e c i s e  es t imates  of t h e  number of counts it 

should have read. 

Energy Cal ibrat ion 

k k 

In the  few cases f o r  which t h i s  ISONPP s c a l e r  fa i led,  t h e  3 0  

A secondary proton from the  t a r g e t  l o s t  a v a r i a b l e  amount of energy 

the re  and had t o  pene t r a t e  s i x  successive material  regions before  en te r -  

ing de tec to r  B' and lo s ing  enough energy i n  it t o  reach t h e  de t ec t ion  

threshold.  The energy lo s ses  could have been determined by laborious 

hand ca l cu la t ion  because most of t he  energy loss  i s  i n  regions of high 

material  density,  whereas most of t h e  f l i g h t  t i m e  i s  spent i n  a i r .  
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Nonetheless, t h e  r e l a t i o n  between a proton 's  energy a t  b i r t h  and i t s  

f l i g h t  time is  s u f f i c i e n t l y  complex t h a t  a d i g i t a l  computer program w a s  

constructed t o  perform t h e  computations with f e w  c a l c u l a t i o n a l  approxi- 

mations. 

The computation yielded the  a c t u a l  f l i g h t  time of a secondary proton 

from various p a r t s  of t h e  t a rge t ,  taking i n t o  a c c o u n t - a l l  t h e  energy 

lo s ses  along t h e  path, t h e  s t a t i s t i c a l  timing f l u c t u a t i o n s  or j i t t e r ,  and 

the  amplitude dependence of t he  time measurement or time slewing. 

The de tec tor  system was analyzed i n  terms of a s e r i e s  of b i n  response 

func t ions  Nk(E), which give the p robab i l i t y  t h a t  a proton born i n  t he  

t a r g e t  a t  energy E and headed toward the  de t ec to r ' s  s e n s i t i v e  a rea  would 

have been detected i n  t h e  k t h  time bin.  I f  protons of a l l  energies  were 

equa l ly  l i k e l y  t o  be produced i n  the  t a r g e t ,  Nk(E) would be the  spectrum 

a t  b i r t h  of t he  protons which a re  r eg i s t e red  i n  the  k t h  b in .  I n  t h i s  

work N (E) does not include the energy dependence of t h e  spectrometer 

e f f i c i e n c y  discussed i n  Section I1 and i s  normalized so t h a t  
k 

where W W  i s  ihe iiiirikim~ ecergy nf  A proton requi red  t o  be detected if  

it or ig ina ted  a t  a po in t  i n  the t a r g e t  most d i s t a n t  from t h e  de tec tor .  

The N (E)  funct ions give d i r e c t l y  t h e  energy r e so lu t ion  of the  sys- k 
tern, bu t  t h e  bas ic  requirement i s  t o  obta in  est imates  of t h e  observed 

cross  sec t ions .  Such estimates could have been obtained by using a gen- 

e r a l  da t a  "unscrambling" scheme, bu t  t h i s  w a s  not  done because of t he  

na ture  of t h e  pred ic ted  b in  response funct ions and t h e  l a rge  s t a t i s t i c a l  

u n c e r t a i n t i e s  i n  t h e  count data.  Instead, t he  counts i n  a given b in  

were taken as represent ing  an energy i n t e r v a l  equal  t o  the  i n t e g r a l  of 

Nk(E), and the  r e s u l t  w a s  p lo t t ed  a t  t h e  mean energy of t h e  b i n  response 

func t ion .  De ta i l s  of t h i s  scheme a r e  described a f t e r  a discussion of 

t h ~  msnner i n  which t h e  N,(E) func t ions  were ca lcu la ted .  
.&& 

Energy Loss Calculat ions.  -- Since t h e  ca l cu la t ion  of t h e  M (E)  w a s  

repeated f o r  each experimental run, required incremental  energy-loss 

ca lcu la t ions  over a series of mater ia l s ,  and involved averaging over a 

r a t h e r  th ick  t a r g e t ,  more than 18 evaluat ions of energy loss were 

k 

L 
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required.  Since i n  t h e  l e a s t  favorable case 8 6  of a proton’s  energy 

was expended p r i o r  t o  i t s  e n t r y  i n t o  t h e  de t ec to r ,  reasonably p r e c i s e  

ca l cu la t ions  were necessary. With t h e  exception of t h e  r e l a t i v e l y  r ecen t  

t a b l e s  of B i ~ h s e l ~ ~  and of Barkas and B e ~ - g e r , ~ ~  ava i l ab le  t abu la t ions  of 

energy l o s s  of protons i n  various materials d i d  not maintain good accur- 

acy over t h e  range of energies involved here  ( 5  t o  160 MeV); a ls0,Bichsel’s  

t a b l e s  would have had t o  be extended t o  a d d i t i o n a l  stopping materials. 

I n  response t o  these  requirements t he  energy loss  w a s  computed from bas i c  

parameters f o r  each case,  according t o  a procedure described elsewhere3’ 

involving in t e rpo la t ion  of ” s h e l l  co r rec t ions”  from a graph due t o  

Turner .4 O 

Calculation of t h e  Response Functions.  -- For a given proton energy 

E and t a r g e t  coordinate 5 ,  t he  f l i g h t  time t f ( E , S )  t o  de t ec t ion  was com- 

puted by summing t h e  f l i g h t  times i n  a hundred o r  so f l i g h t - p a t h  incre-  

ments. The t i m e  measured by the  time spectrometer, 

f l i g h t  t i m e  by 

- 

i s  r e l a t e d  t o  tm’ 

where a i s  t he  time-slewing co r rec t ion  (given i n  F ig .  14)  and is  a c t u a l l y  

a funct ion only of t he  proton energy a t  t h e  f a c e  of de t ec to r  B‘; 5 i s  

measured along t h e  t a rge t -de t ec to r  ax is ;  t h e  delay t i m e  t i s  a f i x e d  

quant i ty  f o r  a given experiment , i ts  value being determined by r o t a t i n g  

the  de t ec to r  i n t o  t h e  proton beam and observing the  time p o s i t i o n  of t h e  

r e s u l t i n g  peak; and tm is  t o  be taken as a mean observed t i m e .  

a c t u a l l y  observed t i m e  t’ w i l l  f l u c t u a t e  f o r  each p a r t i c l e  because of 

t he  (assumed) normally d i s t r i b u t e d  t iming f l u c t u a t i o n s .  

d 

The 

m 

Each b i n  response func t ion  N ( E )  i s  t hus  an  i n t e g r a l  over contr ibu-  k 
t i o n s  from various p a r t s  of t h e  t a r g e t  and over  t h e  time region wi th in  

H.  Bichsel, Sec t .  8~ i n  American I n z t i t u t e  of Physics Handbook, 37 - 
2nd ed . ,  McGraw-Hill. New York, 1963. 

3 8  ‘ W .  Barkas and M. Berger, Studie:. -- i n  Pene t ra t ion  - of Charged P a r t i -  
C k C  in  Matter, NAS-NRC-1133. 

(1965 1. 
=R. W .  Pee l le ,  Rapid Computation Energy Losses , ORNL-TM-977 , 
J. E.  Turner, Ann. Rev. Nucl. S e i .  13, 1 (1963). 4 0  - 
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t he  k t h  b in .  

of energy E are equal ly  l i k e l y  a t  every depth i n  the  t a r g e t ,  even though 

t h e  primary energy changes by 2 o r  3 MeV, implies t h a t  t o  ob ta in  t h e  

des i r ed  normalization of Nk(E) t h e  t a r g e t  i n t e g r a l  should be a simple 

average: 

The assumption t h a t  r eac t ions  y ie ld ing  secondary protons 

Here CT i s  t h e  s tandard deviat ion of t he  s t a t i s t i c a l  timing f l u c t u a t i o n  

and 5, i s  the  thickness  of t h e  t a r g e t  along the  5 coordinate.  

g r a l s  ( 5 )  were performed numerically, using Gauss quadratures, f o r  each 

of a s e r i e s  of energies  E so chosen t h a t  i n t eg ra l s  over E of t he  r e s u l t -  

ing Nk(E) could be performed. 

t o  1 MeV a t  35 MeV and 0.1MeV a t  14 MeV. 

used f o r  t h e  t 
were simply summed i n t o  b ins .  This w a s  adequate because t h e  s tandard 

devia t ion  0 of t h e  j i t t e r  d i s t r i b u t i o n  was 0.43 nsec, and so t h e  in t e -  

grand d id  not change too  rap id ly .  The most complex s i t u a t i o n  w a s  pre- 

sented by t h e  5 i n t e g r a l  because f o r  E low i n  t h e  range t h e  f l i g h t  time 

changed more than 10 nsec f o r  a given E Trom one suYaee of t h e  t n r g e t  

t o  t h e  o the r .  The problem was a t tacked  by s p l i t t i n g  the t a r g e t  automati- 

c a l l y  i n t o  d i f f e r e n t  numbers of regions according t o  the  proton energy 

considered, a nine-point Gaussian quadrature being used f o r  each sec t ion  

of a t a r g e t  corresponding t o  a 2-nsec d i f fe rence  i n  f l i g h t  time f o r  a 

given energy a t  b i r t h .  The in t e rva l s  were chosen so t h a t  the  f i n a l  

r e s u l t s  d i d  not show s i g n i f i c a n t  s e n s i t i v i t y  t o  t h e  f ineness  of the  i n t e -  

g r a t i o n  mesh. 

s ince  t a r g e t  energy lo s ses  changed f o r  each case.  

The in t e -  

Spacings i n  E var ied  from 4 MeV a t  150 MeV 

A three-point  quadrature w a s  

i n t e g r a l  f o r  each 0.48-nsec time channel, and t h e  r e s u l t s  m 

Separate response func t ions  were obtained f o r  each run, 

Figure 17 shows t y p i c a l  response funct ions computed f o r  70- and 

gO-cm f l i g h t  paths ,  t h e  l a t t e r  being used f o r  s c a t t e r i n g  a t  30 and 10’ 

where a g r e a t e r  number wl” high-ccergy p i r t i r l e s  were expected. 

shows E few sec t ions  through t h e  response sur face  f o r  constant  E, which 

represent  t h e  spec t r a  expected f o r  monoenergetic protons.  For p l o t t i n g  

i n  F ig .  18, the  computed i n t e n s i t y  i n  each b in  was divided by t h e  b i n  

width Ak. 

Figure 18 
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Fig .  17. Typical B i r t h  Energy D i s t r i b u t i o n  f o r  t h e  Flight-Time 
Spectrometer. ( a )  70-cm f l i g h t  path,  ( b )  g0-cm f l i g h t  path.  
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Fig. 18. 
F l i g h t  Pa th) .  
ca lcu la ted  t o  appear as. shown. 

Energy Resolution of Proton Flight-Time Spectrometer (90-ern 
Monoenergetic proton groups at  the  ind ica ted  energies  a r e  



Since the cross sec t ions  in t eg ra t ed  over broad energy ranges a r e  of 

i n t e r e s t ,  it i s  a l s o  important t o  understand t h e  cha rac t e r  of t h e  response 

func t ion  f o r  t h e  sum of a number of b ins  or perhaps a l l  b i n s .  

i n t e g r a l  response funct ions are  shown i n  F ig .  19 f o r  t h e  9O-cm f l i g h t  pa th .  

Typical 

The ca l cu la t ion  of t h e  response func t ion  ignored the  e f f e c t s  of 

mu l t ip l e  s c a t t e r i n g  on the  pathlength through t h e  absorbing ma te r i a l ,  

f l u c t u a t i o n s  i n  energy l o s s  about t he  computed mean, t he  l a t e r a l  s i z e  of 

t h e  de t ec to r ,  t h e  s i z e  of t h e  beam spot  on t h e  t a r g e t ,  and any suspected 

timing d r i f t s  during t h e  course of a run. These approximations d id  not 

a f f e c t  t he  r e s u l t s .  

I n t e r p r e t a t i o n  and Application of t he  Response Functions.  -- The - -- 
cross-sect ion d a t a  were analyzed using the following q u a n t i t i e s  obtained 

from the  N ( E )  by t r apezo ida l  quadratures: k 

where E i s  the  maximum energy kinematical ly  p o s s i b l e  f o r  e l a s t i c  s c a t -  

t e r i n g  of t he  inc iden t  beam from the  p a r t i c u l a r  t a r g e t .  It i s  apparent 

from Fig .  17 t h a t  t h e  e f f e c t  of c u t t i n g  o f f  t h e  i n t e g r a l s ,  Eq. (6), a t  

E i s  very important f o r  t he  h ighes t  energy b i n s .  This procedure seems 

equivalent  t o  inclusion of - a p r i o r i  information about t h e  proton spectrum, 

and w a s  u s e f u l  because of t h e  very g r e a t  spread i n  t h e  energies  t o  which 

t h e  highest  bins were s e n s i t i v e .  I n  p l o t s  of t h e  d i f f e r e n t i a l  cross 

sec t ions ,  da t a  from each time b i n  are represented a t  E 
Fig .  18. Note t h a t  I? 
r a t h e r  than of t he  energies  of t h e  p a r t i c l e s  a c t u a l l y  de t ec t ed .  The 

assumption of correspondence i s  equivalent t o  t h e  assumption a t  t h e  out- 

s e t  Of a f l a t  spectrum over t h e  energy regions of import, a proper 

max 

max 

* /v (Ek)  as i n  k 
i s  t h e  average energy of t h e  response func t ion  k 
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assumption because t h e r e  i s  - a p r i o r i  " i n s u f f i c i e n t  reason" f o r  a more 

complicated one. Such an assumption i s  commonplace f o r  spectrometers 

with reasonably f i n c  r e so lu t ion .  Of course, t he  experimental s p e c t r a  a r e  

found t o  be a func t ion  of energy; so the  - a p r i o r i  assumption i s  f a l s e .  

I n  deducing t h e  d i f f e r e n t i a l  c ross  sec t ions ,  4( of Eq. (6) w a s  

employed as the  energy width of t h e  k th  b in .  This i d e n t i f i c a t i o n  would 

be obvious i f  t h e  Nk(E) were shaped as rectangular  blocks.  

t h e  A over a l l  bins i s  j u s t  t h e  energy i n t e g r a l  of t h e  curve of Fig.  19, 
wel l  i d e n t i f i e d  with t h e  t o t a l  energy region s tudied .  The d i f f e r e n t i a l  

cross  sec t ion  0 of Eq. ( 2 )  i s  the  average d i f f e r e n t i a l  cross s e c t i o n  

weighted by the response func t ion  N ( E ) ;  

The sum of 

k 

k 
k 

1 0 = - J O ( E )  N~(E) a~ , 
% E  

which i s  guaranteed the  des i r ed  i n t e g r a l  property by t h e  u n i t  normaliza- ?. 
t i o n  of ' N~(E), 

L-li 

Thus t h e  i n t e g r a l  c ross  s e c t i o n  above t h e  fuzzy low-energy cutoff  of 

Fig.  19 may be obtained i n  t h e  obvious f a sh ion  from t h e  t abu la t ed  d i f f e r -  

e n t i a l  cross  sec t ions .  The nea r ly  l i n e a r  low-energy cutoff i n  F i g .  19 i s  

d i r e c t l y  r e l a t e d  t o  t h e  thinning of t h e  e f f e c t i v e  t a r g e t  a t  low energies 

where protons cannot pene t r a t e  t h e  e n t i r e  t a r g e t  and d e t e c t o r  assembly. 

The energy width, t h e  mean energy, and the  energy var iance of t h e  b ins  

used may be found i n  the  d a t a  t abu la t ions  of t h e  Appendix. 

Two major d i f f i c u l t i e s  of t h e  employed a n a l y s i s  system w e r e  accepted: 

t h e  b i n  response funct ions are not symmetrical, complicating t h e  meaning 

of t h e  presented da ta ,  and t h e r e  i s  no provis ion  f o r  including a v a i l a b l e  

information from the  pulse-height  s p e c t r a  i n  d e t e c t o r  B'. 

Propagation of Estimated Unce r t a in t i e s  - 
An attempt was made t o  perform a proper f i r s t - o r d e r  estimate of' 

u n c e r t a i n t i e s  i n  t h e  energies  and t h e  cross  s e c t i o n s ,  using t h e  

. 
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unce r t a in t i e s  of Table 4 and the counting s t a t i s t i c a l  unce r t a in t i e s .  

Contributions from seerningly independent va r i a t e s  were combined as t h e  

sums of squares,  bu t  where a given parameter en tered  i n t o  the  r e s u l t  i n  

two ways, t he  co r re l a t ion  w a s  t aken  i n t o  account. For instance,  the  

t a r g e t  thickness  a f f e c t s  t he  number of s c a t t e r i n g  centers  and a l s o  t h e  

s i z e  + of t h e  energy b ins  through an  e f f e c t  on energy loss.  

de r iva t ives  of t h e  r e s u l t  with respec t  t o  t h e  uncer ta in  experimental 

v a r i a t e s .  I n  t h e  case of t h e  b in  average energies  E and t h e  b i n  widths 

A t h i s  cannot be done t r i v i a l l y  because the re  i s  no e x p l i c i t  expression 

r e l a t i n g  the  b in  energies  and widths t o  the  experimental  parameters v i a  

a f l i gh t - t ime  computation. The required der iva t ives  could have been 

obtained numerically by performing the  e n t i r e  c a l i b r a t i o n  procedure with 

s l i g h t l y  a l t e r e d  input  parameters, but it seemed ( inco r rec t ly !  ) t h a t  t h i s  

would involve too  high a computing cos t .  A t  t h e  suggestion of R .  L. 

Cowperthwaite t he  required der iva t ives  were obtained with t h e  he lp  of a 

s implif i ed  energy- c a l i b r a t i o n  ana lys i s  and t h e  imp l i c i t  func t ion  theorem. 

A f i r s t - o r d e r  e r r o r  analysis  depends on generat ion of t h e  p a r t i a l  

k 
k 

I n  t h e  s impl i f ied  t ime-ca l ibra t ion  model t h e  time j i t t e r  d i s t r i b u -  

t i o n  was ignored; so f o r  a given b i r t h  pos i t i on  i n  t h e  t a r g e t  t he  measured 

time w a b  a -aiique f u ~ z t i n r ?  clf hi7t.h energy. A s e r i e s  of secondary pro- 

ton  energies  was chosen a t  the approximate d iv i s ions  between adjacent 

energy bins ,  and the  s e n s i t i v i t y  of these  energies  t o  changes i n  t h e  

experimental parameters w a s  studied, with a l l  protons assumed t o  have 

or ig ina ted  a t  a s ing le  t a r g e t  pos i t i on  chosen t o  represent  as wel l  as 

poss ib le  the  average over the  t a r g e t .  A good choice proved impossible 

f o r  t he  lowest and h ighes t  bins, but it w a s  assumed t h a t  t h e  s impl i f ied  

model could represent  adequately t h e  behavior of t h e  energy unce r t a in t i e s .  

Tables 7 and 8 l i s t  t h e  energy and uncer ta in ty  p rope r t i e s  of a 

t y p i c a l  run with t h e  90-cm f l i g h t  path,  t h a t  f o r  protons sca t t e red  from 

cobal t  a t  30 . Uncertaint ies  on each cross  sec t ion  were separated accord- 

ing  t o  whether o r  not they were 'lassociatedl' with a p a r t i c u l a r  point;  i f  

not ,  they  had o r i g i n  i n  unce r t a in t i e s  common to  an e n t i r e  energy spectrum, 

e.  g., in tegra ted  beam s t rength  o r  t a r g e t  th ickness .  I n  t h e  tabula ted  

da ta  of t he  Appendix t h e  s t a t i s t i c a l  counting e r r o r s  a r e  broken out  of 

t h e  "associated" s tandard e r ro r s .  When t h e  cross  sec t ions  are in tegra ted  

0 
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Table 8. Average Proper t ies  of Bins Lis ted  i n  Table 7. 

Bin 
No.  - 

7 
8 
9 
10 

11 

Mean 
Bin 
Energy 
(MeV 

21.5 

25 -7 
29.4 
33 -5 
38.2 
44.5 
54.4 
71.1 
100.4 

129.0 
142.7 

Bin 
Width 
(MeV 1 
4.3 
3 -7 
3.4 
4.6 
4.3 
7.3 
11.8 
19.3 
35 .G 
38.8 
5 *7 

r .m. s .  
Energy 

Var ia t ion  
Within B i n  

(MeV 

-~ 

Uncertainty 
i n  Energy Rela t ive  
Scale  a t  Bin Width a 
Bin Edges Uncertainty 

(MeV ) (% 1 

Rela t ive  
Counting 

Unc e r  t a in  t ya 
(%I 

7.1 
11.9 

18.3 
12.2 

on i 
L U . I  

0.24 5 
J 

0.41 
0.65 
1.1 

1.9 
2.8 
3.9 
5 -5 
5.4 
1.9 

b 

8 
10 

16 
12 

10 

9 
5 
14 
16 

13 
14 
12 

13 
18 
11 

9 
6 
6 
7 
24 

a 

unce r t a in ty  . The combination of these two columns gives the nassociated" 

I -  



over energy only these  counting u n c e r t a i n t i e s  and the  “nonassociated” 

e r r o r s  remain important. The nonassociated o r  normalization u n c e r t a i n t i e s  

for t h e  crosz sec t ion  of t h e  run used f o r  t he  example i n  Tables 7 and 8 
amounted t o  2.8$, combined from the  following: 1.5% i n  beam s t r eng th ,  

1.6% i n  t a r g e t  surface densi ty ,  0.2% from t a r g e t  angle, O.3$ f o r  d e t e c t o r  

a rea ,  1.5% from spectrometer e f f i c i ency ,  and 0.7% from f l igh t -pa th- length  

unce r t a in ty .  

V .  RESULTS 

Angle-Energy D i f f e r e n t i a l  Cross Sect ions f o r  Protons on Nuclei - - 
Numerical values of c ross  sec t ions  measured f o r  secondary protons 

a r e  tabulated i n  t h e  Appendix, along with t h e  necessary c a l i b r a t i o n  in fo r -  

mation, and running sums of t h e  t abu la t ed  values allow determination of 

t h e  integrated cross s e c t i o n s  .(e) over any des i r ed  energy range above 

the  20-MeV minimum energy. I n  t h i s  s e c t i o n  are i l l u s t r a t i o n s  of t h e  

observed energy spec t r a .  A l l  t a b l e s  and f i g u r e s  a r e  given f o r  t h e  lab-  

o r a t o r y  system. 

Figure 20 i l l u s t r a t e s  t h e  d i f f e r e n t i a l  cross  sec t ions  observed a t  

30’ for various t a r g e t s .  

along the  energy a x i s  i s  twice t h e  standard devia t ion  of t h e  b i n  response 

funct ion,  and t h e  symbol i s  centered a t  the  mean b i n  energy. Two uncer- 

t a i n t y  values are shown on each cross  sec t ion :  t h e  inner  one, which i s  

from counting s t a t i s t i c a l  u n c e r t a i n t i e s  alone, and t h e  o u t e r  one, which 

includes the  other  e r r o r  sources, p a r t i c u l a r l y  t h e  u n c e r t a i n t y  i n  t h e  

b in  width. (This uncer ta in ty  o f t e n  appears l a r g e ,  b u t  r e c a l l  t h a t  it 

does not imply an  uncer ta in ty  i n  t h e  number of protons de t ec t ed .  The 

u n c e r t a i n t i e s  i n  t h e  \ a r e  h ighly  c o r r e l a t e d  among t h e  var ious runs . )  

The p l o t t e d  cross sec t ions  increase monotonically with atomic weight, 

and a t  t h e  ava i l ab le  r e s o l u t i o n  t h e r e  i s  no apparent s t r u c t u r e .  However, 

t h e  crosz sect ions are l e s s  f l a t  f o r  t h e  heavier  nuc le i ,  c o n s i s t e n t  per-  

hap:: with t h e  i n t e r p r e t a t i o n  t h a t  more complex i n t e r a c t i o n s  occur i n  t h e  

heavier  t a r g e t  nuc le i .  Data from a water t a r g e t  imply t h a t  t h e  c ros s  

s e c t i o n  of oxygen i s  s i m i l a r l y  shaped b u t  t h a t  a t  30’ it i s  n e a r l y  as 

l a r g e  as  t h a t  f o r  aluminum. 

I n  t h e  p l o t s  t h e  f u l l  length of each symbol 
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Fig. 20. Secondary-Proton D i f f e r e n t i a l  Cross Sec t ion  a t  30° f o r  
160-MeV Protons on Various Elements. 



A t  no other  angle were enough da ta  taken f o r  a comparison s imilar  t o  
F ig .  20, but t h e  sparse  comparisons a t  l a r g e r  angles are cons i s t en t  with 

t h i s  r e l a t i v e  behavior vs  mass number. 

enced by e l a s t i c  s c a t t e r i n g  down t o  r a t h e r  low energies  because of t he  

skewed nature of t h e  response functions and were sub jec t  t o  l a r g e  counting 

backgrounds, b u t  it was poss ib l e  t o  o b t a i n  some r e s u l t s  wi th in  t h e  r a t h e r  

f l a t  po r t ion  of the  secondary proton spectrum between 20 and 60 MeV. 

9 shows t h e  averaged cross  sec t ions  f o r  t h e  region between 20 and 60 MeV 

divided by A2/3, which behaves l i k e  t h e  nuclear area. 

f o r  observations a t  10 and 30 
10 the  observed c ross  sec t ion  i n  t h i s  low-energy region i s  seen t o  in- 

crease with A less  r a p i d l y  than does t h e  nuclear  a r e a .  This e f f e c t  i s  not  

marked f o r  secondaries a t  30 . Only t h e  oxygen da ta  appears t o  be anoma- 

lous a t  30'. The ca l cu la t ed  values i n  Table 9 are from t h e  cascade-plus- 

evaporation model as a f f ec t ed  by de tec to r  resol.ution, described i n  Sect ion 

V I ,  with unce r t a in t i e s  between 5 and 10%. Absolute cross  sec t ions  f o r  t h e  

10 da ta  a r e  given under t h e  following sec t ion ,  " In t eg ra l s  over t h e  Energy 

Spectra.  

The da ta  a t  10' were heavi ly  i n f l u -  

Table 

Values are shown 
0 (from t h e  d a t a  of F ig .  20).  Note t h a t  a t  

0 

0 

0 

Figures 21, 22, and 23 respec t ive ly  i l l u s t r a t e  t h e  observed d i f f e r -  

e n t i a l  cross  sect ions f o r  carbon, aluminum, and coba l t  a t  each angle mea- 

sured. 

and s c a t t e r i n g  from l i g h t  and heavy water t a r g e t s  i s  i l l u s t r a t e d  i n  F i g s .  

24 and 25 i n  the next sec t ion ,  while d a t a  f o r  B i  are given i n  t h e  Appendix 

f o r  10 . )  The da ta  a t  10 have had t h e  e l a s t i c  and n e a r l y - e l a s t i c  con t r i -  

but ion subtracted r a t h e r  a r b i t r a r i l y ,  as ind ica t ed  by t h e  experimental 

c ross  sec t ions  l i s t e d  i n  Table 6, and t h e  p l o t t e d  s p e c t r a  a r e  correspond- 

ing ly  terminated a t  t h e  energy where the  sub t r ac t ed  quan t i ty  becomes 

appreciable according t o  t h e  ca l cu la t ed  response funct ions.  Figures  21- 

23 i l l u s t r a t e  the  "softening" of t h e  secondary s p e c t r a  as t h e  angle  i s  

increased. Such a t r e n d  would be expected i f  t h e  dominant r e a c t i o n s  

could be described as a s h o r t  s e r i e s  of nucleon-nucleon encounters wi th in  

t h e  nucleus. 

(The only d i s t r i b u t i o n s  a v a i l a b l e  f o r  B i  and Be are i n  F ig .  20, 

0 0 

S c a t t e r i n g  of Protons from Hydrogen i n  Water Targets  - -- - 
Figure 24 i l l u s t r a t e s  t h e  s c a t t e r i n g  observed a t  6oV from a water 

t a r g e t ,  where the p-p s c a t t e r i n g  would be expected t o  appear a t  about 37 
MeV. The d a t a  do show a prominent excess over  what might be expected ( s e e  

Sect ion 6 )  from oxygen alone i n  an i n t r a n u c l e a r  cascade approximation. 
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Table 9. Averaged Cross Sections f o r  20- t o  60-MeV Region 
a t  10 and 30°, Divided by A213 

Element 

Be 
C 
0 (from H 0 

A1  

co 

B i  

and D,$) 

Cross Sections (mb steradian-' MeV-') X A-2/3 
8 = 10 deg 0 = 30 deg 

A2/3 Calc . Exp .a Calc . Exp .8 

3.56 0 - 053 0.12 

5 -25 

6.35 
0.047 0.16 0.068 0.12 

0.063 0.17 

9.0 0.963 0.18 0.068 0.12 

15.2 0.064 0.13 0.065 0.12 
35.0 0 * 037 0.044 0.10 

i 0.013 

?Errors  i n  the experimental values a r e  about one Iii the l a s t  d i u i t  _. 

shown f o r  the  18 data  and half  t h a t  b ig  a t  300, where backgrounds were 
smaller.  

examined i s  terminated a t  49 MeV instead of 62 MeV. 
b!I'his uncertain value drops t o  0.04 f 0.013 i f  the  energy region 
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0 Fig .  21. Secondary-Proton Spec t ra  from C a t  10 and 30 . BeyoEd 
t h e  ind ica ted  energy (-120 MeV), e l a s t i c  s c a t t e r i n g  obscured t h e  10 da ta .  
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Fig .  22. Secondary-Proton Spectra  f r o m  A 1  a t  Various Angles. Beyond 
0 t h e  ind ica ted  energy (-100 M e V ) ,  e l a s t i c  s c a t t e r i n g  obscured t h e  10 data .  
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Fig. 24. 160-MeV Protons on H20; 60' Scattering. Oxygen cross 
sections are shown from Bertini's intranuclear cascade calculation and 
from a subtraction of estimated p-p scattering from the experimental data. 
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The comparison i s  complicated both by t h e  energy r e s o l u t i o n  of t he  spec- 

trometer and by t h e  r a p i d  v a r i a t i o n  of t he  s c a t t e r e d  proton energy 

(-Eocos 0 )  over t h e  angular opening of t he  spectrometer. 

i t e d  expected s c a t t e r i n g  from hydrogen i s  a broadened d i s t r i b u t i o n .  The 

p o s i t i o n  of t he  experimental peak appears co r rec t ,  w e l l  wi th in  t h e  

assigned energy standard e r r o r  a t  t h i s  energy of about 2 MeV. (This i s  

t h e  region of maximum pulse-amplitude co r rec t ion  t o  t h e  timing s i g n a l . )  

The magnitude of t h e  peak is  a l s o  about c o r r e c t  if one t akes  t h e  p-p 

center-of-mass d i f f e r e n t i a l  cross  sec t ion  t o  be 3.7 i 0.1 mb/steradian.*’ 

This conclusion i s  imprecise because the  oxygen cross  s e c t i o n  was not  

measured and because t h e  t a r g e t  thickness  w a s  poorly known, bu t  it i l l u s -  

t r a t e s  t h a t  the system w a s  reasonably c a l i b r a t e d  i n  energy and e f f i c i e n c y  

i n  the  40-MeV region, where disagreements with o the r  r e s u l t s  are  s i g n i f i -  

can t .  The predicted energy r e s o l u t i o n  i s  not sha rp ly  t e s t e d  because of 

t h e  energy broadening introduced by t h e  r a p i d  angular dependence of t h e  

s c a t t e r e d  proton energy. 

2 Thus t h e  exhib- 

Sca t t e r ing  from a water t a r g e t  a t  30’ w a s  a l s o  observed, bu t  t he  

energy r e so lu t ion  a t  t h e  p-p s c a t t e r i n g  energy o f  120 MeV i s  t o o  coarse 

t o  allow a good separat ion of t h e  e f f e c t s  of t he  hydrogen from those of 

t h e  oxygen. The da ta  f o r  l i g h t -  and heavy-water t a r g e t s  are shown i n  

F ig .  25, along with an est imated oxygen c ross  s e c t i o n  obtained by aver- 

aging the  measured carbon and aluminum d a t a  of F i g .  20. I n  performing 

the  average the magnitude of t h e  cross  s e c t i o n  a t  any energy w a s  assumed 

t o  vary as A2I3, and t h e  carbon da ta  were given double weight though t h e  

two se t s  of da ta  agreed wi th in  counting s t a t i s t i c s  af ter  d iv id ing  by t h e  

approximate nuclear a r e a .  While t h i s  produces a s p e c t r a l  shape t o  a i d  

i n  t h e  inference of t h e  e f f e c t  of s c a t t e r i n g  from hydrogen, t he  oxygen 

cross  s e c t i o n  appears t o  be about 30% higher  than expected a t  t h i s  angle,  

as shown f o r  low energies by Table 9 .  
H 0 agree reasonably we l l  a t  t h e  lower energies ,  consider ing t h e  5% 
uncer ta in ty  i n  each case i n  determining t h e  t a r g e t  t h i ckness .  The hydro- 

gen s c a t t e r i n g  i s  taken from t h e  samc center-of-mass value of 3.7 mb/ster- 

adian used a t  GO@ , s i m i l a r l y  smeared by the  d e t e c t o r  angle  and energy 

r e r o l u t i o n s .  One can only cay from the  r e s u l t  t h a t  t h e  apparent r i s e  i r i  

t h e  observed cross sec t ion  a t  higher  ene rg ie s  i s  about  what would be 

I n  F ig .  25 t h e  d a t a  from D20 and 

2 

*’W. Hess, Rev. Mod. Phys. - 30, 368 (1958). 

* 

. 
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Fig .  25. Secondary Protons from H20 and D2O a t  30°. Oxygen cross 
sec t ions  a r e  shown estimated from C data and from the  H20 data  l e s s  the  
estimated e f f e c t  of p-p sca t t e r ing .  
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expected from 

more complex; 

da t a  were not 

t h e  hydrogen s c a t t e r i n g .  Sca t t e r ing  from deuterium i s  

s o  de t a i l ed  comparisons with the  r a t h e r  gross observed 

considered worthwhile. Note t h a t  t h e  hydrogen s c a t t e r i n g  

should have no influence on the  d i f fe rence  between in t e rpo la t ed  and 

observed oxygen cross sec t ions  i n  t h e  region below 70 MeV. 

I n t e g r a l s  Over the Energy Spectra  
_.__- 

Tables 10 and 11 give the  i n t e g r a l s  of t he  observed cross  sec t ions  

over t he  proton energy region above about 20 MeV as obtained by summing 

cont r ibu t ions  from a l l  t he  energy b ins  (except a t  10"). Table 10 compares 

the  experimental sums with computed ones, while Table 11 d e t a i l s  the  b a s i s  

of t h e  ca lcu la ted  est imates  (discussed i n  Sect ion 6). The ca l cu la t ed  

values take  in to  account de t ec to r  angular r e so lu t ion .  The in tegra ted  

cross  sect ions a t  30" r i s e  s l i g h t l y  more slowly than t h e  nuclear area,  

cons i s t en t  with Table 9 f o r  the  20- t o  60-MeV region, bu t  t h i s  e f f e c t  i s  

not prominent i n  the  few da ta  a t  wider angles .  

Figure 26 i l l u s t r a t e s  t h a t  t h e  measured cross  sec t ions  f o r  aluminum 

and cobal t  from Table 10 agree with each o the r  remarkably we l l  a f t e r  they  

a r e  divided by A 2 / ' 3 .  The hand-f i t ted  curve of F ig .  26 w a s  i n t eg ra t ed  t o  

y i e l d  o(E > 20 MeV) = 45A2/3 mb, o r  o(E > 29, A R )  = 0.40 barn, o(E > 30, 
Co) = 0.68 barn. 

dary m u l t i p l i c i t y  of 1 proton per  r eac t ion  f o r  an  e f f e c t i v e  nuclear  rad- 

ius  of 1.2 x An ana lys i s  on t h i s  s jmplified b a s i s  should 

not be pressed. 

Comparisons with Other Experiments 

These values correspond t o  an averaged charged-secon- 

A' ! 3  em. 

-- 
Very few o ther  experiments have produced spec t r a  which compare 

d i r e c t l y  with those given here .  

a t  60' by Gibson e t  a1.6 agree wi th in  t h e i r  u n c e r t a i n t i e s  f o r  energies  

above 50 MeV, where both spectrometers operated,  but  t h e r e  i s  r a t h e r  

general  disagreement with the  d a t a  of Roos,14 who found markedly more 

i n t e n s i t y  than w e  d id  a t  t he  high end of t h e  spec t r a  and a marked d i p  

i n  the  40- t o  50-MeV region even f o r  r a t h e r  wide angles .  

the  110-MeV region the  Roos da ta  f a l l  we l l  above t h e  60" s p e c t r a  of 

Spec t ra  observed a t  t h e  160-MeV energy 

-- 

A t  energ ies  i n  

Gibson f o r  carbon and bismuth t a r g e t s ,  4 2  but  F ig .  27 shows t h e  only  case 

where a near ly  d i r e c t  comparison of a l l  t h ree  experiments i s  poss ib l e .  

of t he  Gibson experiment. 
Gibson, p r iva t e  communication, 1965; see r e f .  6 f o r  desc r ip t ion  



. 67 

Table 10. Angle D i f f e r e n t i a l  Laboratory Cross Sections 
f o r  Secondary Protons Above - 20 MeV Compared with 
Available E s t i m a t e s .  

p , xp y( 8 ) (mb/s t eradian ) 
Estimated Measured 

0 Energy Cutoff a 
- (MeV) 

A 4 1 3  meas Target 

Be 

C 

16.2 20.1 68 f 1.5 70 * 2 30 

lob 
30 

20.0 t o  59 
1-9 -9 

9.7 f 1.2 
90 f 3 

32.5 f 2.3 
75 f 3 14.3 

19.6 t o  59 
19.5 
19.2 
19.2 
20.7 

23 * 2 

85.7 f 1.6 
45.0 f 1.1 

65 f 4 

80 f 3 
43 f 1.5 

8.2 f 0.4 11.4 f 0.6 

133 f 3 124 f 4 
10 
30 
45 
60 
90 

13.8 
8.9 
4.8 
1 - 3  

19.9 t o  61  
20.0 
19.2 
19.3 
20.9 
19 -7 

39.7 f 2.4 
196 f 3 
130 =t 2.3 

67.5 f 1.6 

3.35 f 0.2 9.7 f 0.7 

82 f 7 
187 f 7 
128 f 5 
70 f 3 

13.0 f 0.6 21.2 f 1.1 

126 f 2 O C  57 f 3c 
LU;/ 4 0  I, 5 - -  370 f 14 

co 10 
30 
45 
60 
90 

120 

12.3 
8.4 
4.6 
1.4 
0.64 

18.6 t o  62 
i.6 -7 

B i  

H2° 

D2° 

10 
30 9.5 

d 
19 'Be 
6.3 

134 f 3 
48 f 1 

152 f 7 
54 f 3 

30 
60 

20.2 
19 -7  

16 .5f 160 f 6 157 f 7 30 20.9 

~- ~ 

a Taken f o r  8 maxinliun s e n s i t i v i t y  on a curve l i k e  t h a t  i n  F ig .  19 

b A l l  10' d a t a  a r e  in tegra ted  over t he  energy region indicated i n  

showing the  i n t e g r a l  response f o r  a l l  b ins  summed. 

the  Energy Cutoff Column. 

here (f 30%) i f  t h e  upper l i m i t  had been taken a t  50 MeV. 

C As ind ica ted  i n  Table 9, es t imated and measured values would agree 

%sed on an in fe r r ed  oxygen cont r ibu t ion  of 125 mblsteradian. 

Based on a n  in fe r r ed  oxygerl sant r lbz t ion  of 40 mb/steradian. 

fBased on an in fe r r ed  oxygen cont r ibu t ion  of 104 mb/steradian. 

e 

. 
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Table 11. Sources of Estimated Cross Sect ions 

Target 

Be 

C 

A1 

co 

B i  

H2° 

D2° 

30 

10 
30 

10 
30 
45 
60 
90 

10 
30 
45 
60 
90 
120 

10 
30 

30 

60 

30 

Energy Cutoff o( @)(mb/steradian)  
C (MeV) E l a s t i c a  Cascade Evaporation 

20.1 3 64.3 f 1.4 

20.0 t o  59 9.2 1.2 
19.9 3 86.4 rt 2.3 

19.6 t o  59 22.8 f 1.5 
19.5 7 125.2 i 2.3 
19.2 - 0.5 84.4 i 1.6 

20.7 - 0  7.6 f 0.4 
19.2 - 0.04 44.2 i 1.1 

19.9 t o  61 38.9 i 2.4 
20.0 7 188 i 3 
19.2 - 0.5 128.2 i 2.3 
19.3 - 0.05 66.5 f 1.6 
20.9 - 0  12.2 f 0.6 
1-9 -7 - 0  2.38 f 0.17 

18.6 t o  62 55 f 4 
18.7 15 252 f 5 

20.2 5; + 26.6 i 101.8 i 2 
f 0.8d 

& 0.4d 
19.7 0.1 + 14.2 f 32.9 f 0.9 

20.9 5 + 53 * 5e 101.5 f 2 

0.73 f 0.03 

0.53 f 0.04 
0.54 f 0.04 

0.67 f 0.03 
0.68 f 0.03 
0.77 f 0.03 
0.77 f 0.03 
0.63 f 0.03 

0.82 i 0.05 
0.82 i 0.05 
1.02 i 0.05 
1.00 f 0.06 
0.79 f 0.05 
0.97 f 0.06 

1.6 i 0.1 
1.5 * 0.1 
0.53 f 0.02 

0.62 f 0.03 

0.49 f 0.02 

%ncer ta in t ies  i n  t h e  est imated e l a s t i c  s c a t t e r i n g  a r e  taken as 1% 

bThe angular i n t e r v a l s  genera l ly  used i n  s o r t i n g  the  Monte Carlo 

The u n c e r t a i n t i e s  ind ica ted  

except. i n  Co, 0, and B i ,  where they  a r e  15 t o  2% ( see  Table 6). 

output  were 0-14, 24-35, 40-50, 56-64, 85-95, and 110-131°. The "30'" 
i n t e r v a l  f o r  carbon w a s  a c t u a l l y  21-38' . 
a r i s e  from Monte Carlo s t a t i s t i c s  a lone.  

The quoted u n c e r t a i n t i e s  a r e  of s t a t i s t i c a l  o r i g i n .  F a i r l y  s m a l l  
changes i n  t h e  evaporation model described i n  Sec t ion  V I  can produce up 
t o  1% changes. 

The l a r g e r  value i s  t h e  est imated s c a t t e r i n g  from hydrogen asswz- 
ing a center-of-mass d i f f e r e n t i a l  cross  s e c t i o n  of (3.7 f 0.1) mb/ster- 
ad ian .  These values take  i n t o  account averaging over t h e  detectok. face  
8 s  ?:ell as t h e  r e l a t i v i s t i c  transform t o  l abora to ry  coord ina tes .  

C 

d 

e 
This 53 mb/steradian es t imate  assumes t h a t  t h e  i n t e g r a l  c ross  

sec t ion  i s  t h e  same as if the  deuteron were unbound and t h a t  on- ( 8 )  = 
(3.6 f 0.6) mb/steradian i n  t h e  center-of-mass-system [ see  F ig .  92 of 
A .  F .  Kuckes e t  a l . ,  Ann. Phys. ( N .  y . )  1 5 ,  193 (1961) for experimental  
r e s u l t s  a t  14-6 MeV]. 

- 
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estimates have been smeared with the computed instrument response, and 
the MIT data are shown with and without such smearing. 

Data from this experiment are compared against those of Gibson, 
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The R o o s  da ta  f o r  5 8 N i  is  compared with cobal t  data f o r  t h e  o ther  experi-  

ments, which seems permissible  because both Roos' work and the  present  

experiment show a very s m a l l  change i n  t h e  observed spec t r a  over t h e  whole 

range from beryll ium t o  bismuth. With o r  without inc lus ion  of instrumen- 

t a l  broadening, ROOS' d a t a  l i e  d e f i n i t e l y  above the  o ther  experiments 

above 60 MeV and below t h i s  experiment a t  lower energies .  

a comparison a t  30' f o r  a carbon t a r g e t  which i s  t y p i c a l  of t h e  observed 

discrepancies  between ROOS' data and ours f o r  Be, B i ,  and N i  vs Co. ROOS' 

da ta  a r e  cons is ten t  with those of Fox and Ramsey," though t h e i r  energy 

regions do not  overlap.* 

Figure 28 shows 

AE descr ibed i n  t h e  introduct ion,  experimental  work a t  o ther  energies  

may be examined f o r  t h e  general  shape t o  be expected of t h e  spec t r a  a t  

160 MeV, but  s ince  t h e  main i n t e r e s t  i n  t h e  experiment i s  j u s t  t o  observe 

t h e  dependence on inc ident  energy, not much appeal  can be made here  t o  

t h i s  source of information. 

V I .  COMPARISON WITH THE 1 N " U C L ; E A R  CASCADE-PLUS-EVAPORATION MODEL 

- The Cascade-Plus-Evaporation Model 

There I s  presen t ly  only one p r a c t i c a l  model f o r  es t imat ion of complete 

d i f f e r e n t i a l  nucleon spec t r a  i'rufii iionekis:tic r e e c t . i o n s  of 160-MeV primary 

protons.  

introduced by G ~ l d b e r g e r ~ ~  and f i r s t  ex tens ive ly  employed by Metropolis 

e t  Monte Carlo techniques a r e  used t o  fol low the  incident  nucleon 

and i t s  subsequent microscopic r eac t ion  products through a model nucleus 

which i s  a bundle of moving but nonin terac t ing  nucleons, with i n t e r a c t i o n  

cross  sec t ions  used f o r  c o l l i s i o n s  between t h e  inc ident  p a r t i c l e  and any 

ind iv idua l  bound nucleon taken from f r e e  n-p and p-p s c a t t e r i n g .  

ons" a r e  followed along t h e i r  c l a s s i c a l  pa ths  i n  the  three-dimensional 

ou t  with much b e t t e r  energy r e so lu t ion  than t h e  present  one, allowing 
proper separa t ion  of e l a s t i c  s c a t t e r i n g .  The l i n e a r i t y  of t h e i r  s c i n t i l -  
la -L--- L U I  - P A L "  -L-.r\+n+~~hp V" v u u -  rnmhination - . was not f u l l y  demonstrated, and the  d ip  i n  
t h e  observed cross  sec t ions  l i e s  j u s t  above t h e i r  spectrorne Lei- cutoff 
energy. Similar ly ,  t h e  experiment of Fox and Ramey appears qu i te  care- 
f u l l y  done. The l a t t e r  seem t o  have observed about a t h i r d  of t h e  "evap- 
ora t ion"  y i e l d  seen by Ba i l ey '  a t  190 MeV if t a r g e t s  having near ly  equal  
atomic weights a r e  compared. 

The method, o f t en  ca l led  the  ( i n t r a n u c l e a r )  cascade model, w a s  

-- 

"Nucle- 

*There i s  no obvious f l a w  i n  the  Roos experiment, which was c a r r i e d  

4 3 M .  L. Goldberger, Phys . Rev. 74, 1269 (1948). 
4 4 N .  Metropolis -- e t  al . ,  Phys. R G .  - 110, 185 and 204 (1958). 

I .  
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model "nucleus" u n t i l  they  escape, f a l l  below an a r b i t r a r y  cu tof f  energy 

or one demanded by known binding energies ,  or have a c o l l i s i o n  with 

another nucleon, whose products i n  t u r n  must be followed. 

nucleon" momentum i s  chosen from t h e  same d i s t r i b u t i o n  a t  every s tage  of 

t h e  reac t ion .  When no more p a r t i c l e s  can escape by t h i s  cascade process 

t h e  "react ion" i s  terminated and t h e  remaining exc i ted  nucleus can be 

t r e a t e d  by a nuclear  evaporation ( o r  o t h e r )  model capable of dea l ing  with 

r e d i s t r i b u t i o n  of t h e  ava i lab le  nuclear e x c i t a t i o n  energy t o  allow p a r t i -  

c l e  escape. Only one bound nucleon i s  assumed t o  be involved i n  each 

i n t e r n a l  c o l l i s i o n  process,  and ne i the r  neighboring nucleons nor t h e  tar-  

g e t  as a whole shares i n  the  energy-momentum conservation of a p a r t i c u l a r  

p-p o r  p-n c o l l i s i o n .  Thus secondary alpha p a r t i c l e s  o r  deuterons can- 

not  be pred ic ted  by t h e  cascade model i n  i t s  pure form. 

The " t a rge t  

I n  applying the  cascade model one genera l ly  assumes a s p a t i a l  depen- 

dence of t he  average nuclear p o t e n t i a l  e n e r g p  and a momentum d i s t r i b u -  

t i o n  f o r  t h e  bound t a r g e t  nucleons which i s  roughly appropriate  t o  the  

nuclear  s i z e .  

The cascade model depends f o r  conceptual v a l i d i t y  upon t h e  idea of 

f r e e  f l i g h t  f o r  t he  inc ident  nucleon over some d i s t ance  wi th in  t h e  

nucleus, r e i n s t i t u t e d  by Serber' a f t e r  a decadc $ z i n g  which it seemed 

t h a t  a s t rong  i n t e r a c t i o n  model must always be used. This f r e e  f l i g h t  

requi res  apparent transparency of the  nuclear ma te r i a l  f igured  using 

f r e e - p a r t i c l e  cross  sec t ions  o r  perhaps the  smaller  e f f e c t i v e  cross  

sec t ions  which take  i n t o  account exclusion e f f e c t s .  7,43 

Insp i r ed  by t h e  c l a s s i c a l  kinematics employed within the  nucleus, 

t h e  a d d i t i o n a l  assumption i s  usua l ly  s t a t e d  t h a t  t he  inc ident  nucleon 

wavelength be s h o r t  enough f o r  a s i n g l e  p-n o r  p-p i n t e r a c t i o n  t o  be 

loca l i zed  t o  the  t y p i c a l  volume occupied by a bound nucleon, about 

2 x cm i n  diameter. I n  considering t h e  r e l a t i o n  of t h e  i n t r a -  

nuclear  cascade model t o  t h e  unce r t a in ty  r e l a t i o n s ,  it he lps  t o  recognize 

t h a t  var iab les  dioszn at ranrlnm need not  be considered "sharp" even though 

t h e  computer proceeds with machine prec is ion .  Thus t h e  incident  p a r t i c l e  

can have sharp momentum, and t h e  minimum uncer ta in ty  i n  t h e  c o l l i s i o n  

Wince  t h e  f r e e - p a r t i c l e  cross  sec t ion  i s  used, t he  nucleon being 
s t ruck  should not be thought t o  cont r ibu te  t o  the  average nuclear p o t e n t i a l .  

. 
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p o i n t  i s  q u a l i t a t i v e l y  r e l a t e d  t o  t h e  unce r t a in ty  i n  t h e  s c a t t e r e d  momen- 

tum, which has a range of poss ib l e  values l a r g e r  than t h e  inc iden t  momen- 

twn i t s e l f .  This broad uncer ta in ty  seemingly allows l o c a l i z a t i o n  of a 

c o l l i s i o n  t o  a region of t h e  same order  as X of t h e  incident  particle,’6 

though only the  approximate s t a r t i n g  p o i n t  f o r  t he  s c a t t e r e d  wave need 

be known t o  estimate t h e  p r o b a b i l i t y  of an  a d d i t i o n a l  i n t e r a c t i o n .  

u sua l  assumption of a sho r t  i nc iden t  wavelength i s  not a p re s s ing  r equ i r e -  

ment except i n  the  very low energy region because the  l o c a l i z a t i o n  of t h e  

i n t e r a c t i o n  point  i s  produced by t h e  c o l l i s i o n  and i s  not a p r e r e q u i s i t e  

of i t .  I f  the l o c a l i z a t i o n  uncer ta in ty  were a chief obs t ac l e ,  it could 

be compencated i n  ca l cu la t ion  by introducing a s t o c h a s t i c a l l y  determined 

jump between t h e  Monte Carlo c o l l i s i o n  po in t  and t h e  nominal s t a r t i n g  

po in t  of t h e  path of t h e  s c a t t e r e d  p a r t i c l e .  

The 

The most important conceptual v a l i d i t y  requirements f o r  t h e  i n t r a -  

nuclear  cascade model a r e  t h a t  a c o l l i s i o n  with any given nucleon be 

unl ike ly  and t h a t  an  impulse approximation hold, i . e  . , t h a t  t h e  nucleus 

as a whole be unable t o  respond quickly enough t o  influence t h e  course 

of a r eac t ion .  Even i f  t he  l a t t e r  condi t ions are f u l f i l l e d ,  it would be 

remarkable i f  t h e  whole high-energy p a r t  of t h e  spectrum could be pre-  

d i c t e d  by a near ly  c l a s s i c a l  process which only  considers r eac t ions  with 

one bound nucleon a t  a time. 

The d e t a i l e d  comparisons i n  t h i s  r e p o r t  were prepared using t h e  

in t r anuc lea r  cascade method and program of with h i s  s tandard 

th ree - s t ep  set  of nonuniform nuclear  d e n s i t i e s  arranged t o  approximate 

the  nuclear dens i ty  d i s t r i b u t i o n s  requi red  by e l e c t r o n  s c a t t e r i n g  d a t a .  

With t h e  nucleon d e n s i t i e s  f o r  neutrons and protons f i x e d  by t h e  e l e c t r o n  

da ta  within each of t h e  th ree  annular regions,  a corresponding w e l l  depth 

was chosen such t h a t  degenerate nonin terac t ing  Fermi gases would have 

the  proper dens i ty  i n  each reg ion  if t h e  least-bound p a r t i c l e  had a 

separat ion energy of 7 MeV, independent of nucl ide.  

we l l  depth required by t h e  nucleon densi ty ,  t h e  correspondence p r i n c i p l e  

I n  es t imat ing t h e  

itA more quan t i t a t ive  statement i s  no t  known t o  have been worked Out. 
i s  cm f o r  a 20-MeV proton.  The s tandard u n c e r t a i n t y  r e l a t i o n  

says t h a t  if the r.m.s. p o s i t i o n  u n c e r t a i n t y  i s  X t he  momentum r.rn.s. 
unce r t a in ty  must be a t  leas t  one h a l f  t he  momentum i t s e l f .  

H. Ber t in i ,  Phys. Rev. 131, 1801 (1963); a l so ,  Monte Carlo Calcu- 
45 - -- l a t i o n s  on In t r anuc lea r  Cascades, - ORNL-3383 (1963). 
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(very  l a rge  nucleus) approximation w a s  made t h a t  t he  number of ava i l ab le  

s t a t e s  up t o  p 

bound nucleons d i d  not have momentum d i s t r i b u t i o n s  corresponding t o  

so lu t ions  of the  wave equation i n  t h e  assumed p o t e n t i a l .  The p o t e n t i a l  

wel l  i n  B e r t i n i ' s  model i s  used t o  ob ta in  t h e  l o c a l  k i n e t i c  energy of a 

p a r t i c l e  of given energy but i s  not used t o  provide any r e f r a c t i o n  of 

t h e  inc ident  o r  e x i t  p a r t i c l e s .  The s p e c i a l  assumptions of B e r t i n i ' s  

model do not  seem worse than  those of t h e  cascade model i n  general  a t  

t h e  higher  energies  and f o r  the heavier  nuc le i  f o r  which the  model was 

intended; but  i n  using the  spec t ra  down t o  20-MeV outgoing energy, as 

we did,  t h e  neglect  of r e f r ac t ion  and of d e t a i l s  of the  in t ranuclear  

momentum d i s t r i b u t i o n  might be considered t o  be ser ious .  B e r t i n i ' s  

machine ca l cu la t ion  produces a magnetic tape  h i s t o r y  which l i s t s  t h e  

parameters f o r  a l l  escaping p a r t i c l e s  from successive model encounters 

with t h e  nucleus. These tapes were subsequently analyzed t o  give t h e  

estimated d i f f e r e n t i a l  cross  sec t ions  wi th in  p a r t i c u l a r  angle and energy 

regions.  

i n  volume R i s  j u s t  p ropor t iona l  t o  Sapiax. Thus t h e  max 

To account f o r  t h e  r e s idua l  nuclear  exc i t a t ion ,  Bert ini45 employed 
46 an adaptat ion of t h e  program EVAP w r i t t e n  by Dresner 

methods or" L e C o ~ i e u i - ~ ~  acd I%ctrnv7liy4* i n  a Monte Carlo evaluat ion of 

evaporation processes i n  which enough e x c i t a t i o n  energy is ava i l ab le  t o  

produce more than  a s ing le  secondary nucleon. 

i s  based upon t h e  compound-nucleus hypothesis and through t h e  r e c i p r o c i t y  

theorem upon equal  - a p r i o r i  p robab i l i t y  of decay of t h e  compound nucleus 

i n t o  regions of phase space having equal  volumes. 

cess continues u n t i l  t h e  estimated p r o b a b i l i t i e s  of decay v i a  neutron, 

hydrogen, o r  helium isotopes a r e  a l l  n u l l .  The success of t h e  program 

depends a t  least  on i ts  est imat ion of nuclear l e v e l  dens i t i e s ,  of b a r r i e r  

pene t ra t ion  f a c t o r s ,  and of t h e  masses of nuc le i  off t he  s t a b i l i t y  l i n e .  

t o  c a r r y  ou t  t he  

The evaporation theory 

The evaporation pro- 

46 L. Dresner, EVA€', A Fortran Program f o r  Calculat ing t h e  Evapora- - -  - 
t i o n  of Various F a r i i c l e s  awn- l lWu v v - i f e d  u L L u A - - -  Cnmpound Nuclei, O m T B ' m 3 0  -- 
(1961). 

K. J. LeCouteur, Chapt. V I 1  i n  Nuclear Reactions, V o l .  1, Endt 
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For use with t h e  cascade ana lys i s  the  o r i g i n a l  pre-evaporation nucleus 

and i t s  exc i t a t ion  were determined from each p a r t i c u l a r  cascade Monte 

Carlo h i s t o r y .  The main conceptual d i f f i c u l t y  i n  app l i ca t ion  of t h i s  

equilibrium evaporation ana lys i s  t o  t h e  postcascade nucleus i s  t h a t  t h e  

o r i g i n a l  "doorway" e x c i t a t i o n  does not i nev i t ab ly  l ead  t o  general  hea t ing  

of t he  nucleus but  r a t h e r  t o  spo t  heat ing.  It has been suggested t h a t  

decay of a sys tem r e s u l t i n g  from knockout of a t i g h t l y  bound nucleon 

might more probably resemble an Auger e f f e c t ,  i n  which only two bound 

nucleons d i r e c t l y  p a r t i c i p a t e .  

Fortunately,  t h e  de -exc i t a t ion  of the  postcascade nucleus i s  not 

very important f o r  the  proton energy region > 20 MeV s tud ied  here; o r  a t  

l ea s t  t h e  evaporation estimates determined here  amount t o  but  a s m a l l  

f r a c t i o n  of the predicted cross  sec t ion  except f o r  t he  lowest energy b ins  

and t h e  widest de t ec to r  angles .  

The a c t u a l  es t imat ion of t he  c ross  sec t ions  was done using a pro- 

gram of Aebersold's, heavi ly  influenced by t h e  work of S ~ h u t t l e r , ~ '  

which i s  a modification of t h e  B e r t i n i  system designed t o  combine t h e  

s o r t i n g  of the  cascade r e s u l t s  with the  Monte Carlo evaporation estima- 

t i o n  and the  estimation of u n c e r t a i n t i e s  i n  both.  Aside from questions 

of d a t a  presentat ion,  t h e  Aebersold system d i f f e r s  i n  t h e  following 

minor ways from t h a t  o r i g i n a l l y  employed by Ber t in i :  

1. A r e s i d u a l  nucleus which i s  a l s o  a poss ib l e  outgoing p a r t i c l e  

i s  counted as the l a t t e r ,  any nominal e x c i t a t i o n  energy being divided 

between p a r t i c l e s .  

even i f  t h e  estimated decay p r o b a b i l i t y  i s  zero because of b a r r i e r  e f f e c t s .  

Unphysical multiple-evaporation paths i n  ( Z , A )  space f o r  very  l i g h t  

nucl ides  are avoided by p r o h i b i t i n g  considerat ion of intermediate  nuc le i  

which a r e  estimated t o  have a binding energy. 

Nuclides such as 'Be are allowed p a r t i c l e  decay, 

2. The channel energy i s  shared by t h e  heavier  fragment i n  t h e  
0 decay, and these energies  are accumulated as if emission were a t  90 i n  

t h e  center-of-mass system of t h e  temporary nucleus. However, t h e  i n i t i a l  

momentum following t h e  cascade process i s  ignored because inclusion leads 

t o  negative e x c i t a t i o n  ene rg ie s  f o r  a few percent  of t h e  r e s i d u a l  nuc le i .  

R. Schut t le r ,  Ef f ic iency  of Organic S c i n t i l l a t o r s  f o r  F a s t  Neutrons, 4 9  
- -- ORNL-3888 ( i n  p re s s ) .  
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3. Additional masses a r e  added t o  the  t a b l e s  of Wapstra" and 

Huizenga'l used by Dresner, i n  the  region below 27A1,  using recent  

experimental  da t a  as w e l l  as rough est imates  and i sobar  r e l a t i o n s .  

When t h e  m a s s  formula of Cameron 52 i s  used t o  supply unknown nuclear 

masses, it i s  asked t o  supply only t h e  mass d i f fe rence  t o  a known nuclide 

of t h e  same A. Approximate use of t h e  Cameron r e l a t i o n  f o r  n u c l e i w i t h  

Z o r  N < 11 was enabled by est imat ing values of " s h e l l  p lus  pair ing" cor- 

r e c t i o n  f o r  Z and N up t o  10. Because of t he  d e t a i l s  of t he  Cameron 

system, t h e  extensions make a change i n  some estimated masses as l a rge  

as 20 MeV. Pa i r ing   correction^^^ t o  t h e  e f f e c t i v e  e x c i t a t i o n  energy 

should a l s o  have been en tered  f o r  t he  same l i g h t  nucl ides .  

The above e f f e c t s  a r e  of much s igni f icance  only when the  evapora- 

t i o n  theory i s  appl ied t o  nuclei  i n  t h e  aluminum region o r  below, and 

one must suppose t h a t  t he re  i s  l i t t l e  chance of t he  l e v e l  dens i ty  param- 

e t e r s  used being v a l i d  f o r  the  l i g h t  nucl ides .  Further ,  i n  t h i s  m a s s  

region a l l  bc t  the  most bas i c  assumptions of t h e  in t ranuclear  cascade 

a r e  i n  t rouble .  The cascade-plus-evaporation method as used v io l a t e s  

energy conservation a t  l e a s t  by giving the  postcascade exc i ted  nucleus 

no k i n e t i c  energy and by computing t h e  i n i t i a l  e x c i t a t i o n  p r i o r  t o  t h e  

evaporation process zln t h e  ? ? s i c .  of a f ixed  separa t ion  energy of 7 MeV 

f o r  each nucleon l i b e r a t e d  by t h e  cascade ( r a t h e r  than using the a c t u a l  

nuclear  mass l a t e r  assumed i n  es t imat ing t h e  boil-off-decay of t he  same 

nucleus) .  

es t imates  a r e  t h e  b e s t  es t imates  ava i l ab le .  

I n  s p i t e  of t hese  d i f f i c u l t i e s  t he  cascade-plus-evaporation 

Another set of in t ranuclear  cascade est imates  has  r ecen t ly  become 

ava i l ab le  from Mil le r  and h i s  co-workers"* a t  Columbia. Their model 

c l o s e l y  resembles B e r t i n i ' s  with two exceptions: t h e i r  nuclear dens i ty  

func t ions  have seven r a t h e r  than  th ree  s teps ,  and r e f r a c t i o n  and r e f l ec -  

t i o n  a t  t h e  p o t e n t i a l  s t eps  may op t iona l ly  be included. Preliminary 

comparison ind ica tes  t h a t  the pred ic ted  d i f f e r e n t i a l  cross  sec t ions  from 

50 A. M. Wapstra, Physica 21, 367 arid 385 (1-955). 
51J. R .  Huizenga, Phys ica31 ,  410 (1955). 
52 A. G. W. Cameron, Can. JTPhys ic s ,  - 35, 1021 (1957). 
53 A.  G. W .  Cameron, Can. J. Physics, 36, 1040 (1958). 
54 J. Miller, p r i v a t e  communication ( 1 g 5 ) .  
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t h e  two ca l cu la t ions  are similar, p a r t i c u l a r l y  when r e f l e c t i o n  and 

r e f r a c t i o n  a re  ignored. Inclusion of t hese  e f f e c t s  i n t o  Miller 's  calcu- 

l a t i o n  f o r  160-MeV protons on coba l t  tended t o  wash out  t he  quasi-free 

s c a t t e r i n g  peak. Strengthening of t h e  wide-angle s c a t t e r i n g  was a l s o  

observed, by a f a c t o r  of almost 3 a t  120'. 

protons from 160-MeV protons on bismuth a t  30°, t h e  Miller c a l c u l a t i o n  

gave no quasi-free peak and an i n t e g r a l  cross  s e c t i o n  over energy which 

was only half  as l a r g e  as B e r t i n i ' s ;  but  f o r  aluminum and coba l t  t a r g e t s  

no such l a rge  d i f f e rences  were apparent. 

I n  t h e  case of secondary 

Folding-in of t h e  Instrument Response 

A s  i n  the comparisons with experiments having good energy r e so lu t ion ,  

a l l  es t imates  from t h e  B e r t i n i  cascade-plus-evaporation model were smeared 

with t h e  computed spectrometer response funct ions N (E) before comparisons 

were made. The p l o t t e d  t h e o r e t i c a l  estimates are t h e r e f o r e  l e s s  d e t a i l e d  

than they might be, and they appear as i f  measured with t h e  a c t u a l  spec- 

trometer except t h a t  e l a s t i c  s c a t t e r i n g  i s  not  included. I n  performing 

the  smearing, t h e  combined cascade and evaporation est imates  were so r t ed  

i n t o  narrow bins which j u s t  match the  energy ranges over which the  

computed response funct ion was averaged f o r  t h i s  purpose. The smearing 

operat ion w a s  j u s t  a matrix m u l t i p l i c a t i o n  i n  which t h e  u n i t  normalization 

of t he  response funct ions s impl i f i ed  t h e  procedure. A s  can be seen from 

F igs .  2'7 - 29 t he  main e f f e c t s  of t he  smearing were t h a t  t h e  evaporation 

cont,ribution t o  t h e  i n t e n s i t y  i n  the  lowest energy b i n  w a s  g r e a t l y  

increased and the  predicted quas i-f r e e  s c a t t e r i n g  peak i n  t h e  spectrum 

f o r  s m a l l  angles was l e s s  sharp.  I n  i s o l a t e d  cases  each e f f e c t  i s  

i l l u s t r a t e d  below. 

k 

Comparison of the  In t eg ra t ed  Cross Sect ions - 
Table 11 showed t h e  estimated values of t h e  none la s t i c  c ros s  s e c t i o n s  

above t h e  20-MeV cu to f f ,  as w e l l  as t h e  evaporat ion proton con t r ibu t ion  

as computed by t h e  Dresner r o u t i n e .  The methods used i n  e s t ima t ing  t h e  

e l a s t i c  cross  sect ions are ou t l ined  under "Background Analyses and 

Subtraction" i n  Sect ion I V .  When combined, t h e  c a l c u l a t e d  values may 

be compared' against  experiment v i a  Table 10. 
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0 Fig .  29. D i f f e r e n t i a l  Cross Sections a t  45 f o r  Protons from 160-MeV 
Protons on Co. Experimental points  a r e  compared aga ins t  the  histogram 
represent ing  the B e r t i n i  cascade and evaporation est imates  and aga ins t  
t h e  est imates  as smeared by the de t ec to r  r e so lu t ion .  The e f f e c t  of t h e  
(assumed) i so t rop ic  evaporation cont r ibu t ion  on the smeared spectrum i s  
shown. 
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Agreement between measured and est imated values i s  l e a s t  favorable  

f o r  the  20- t o  60-MeV in t eg ra t ed  values a t  loo, where f o r  a l l  bu t  bismuth 

t h e  measured values a r e  twice a s  l a rge  as t h e  est imated values.)' 

estimated values were a l s o  very s e r i o u s l y  low f o r  90 and l2Oo from coba l t  

and aluminum. For s c a t t e r i n g  angles 30 through 60°, where t h e  energy i s  

s p l i t  r a t h e r  evenly i n  the  i n i t i a l  encounter between inc ident  and t a r g e t  

nucleo'n, beryllium, aluminum, and cobal t  t a r g e t s  show no disagreements. 

Bismuth and carbon t a r g e t s  a t  30 show 2% discrepancies ,  and, i f  the  

method of es t imat ing t h e  deuterium cont r ibu t ion  i s  v a l i d ,  D20 and H20 
give weakly incons i s t en t  r e s u l t s .  Est imat ion of t he  thickness  of t he  

water t a r g e t s  was qui te  d i f f i c u l t ,  and small  amounts of water could have 

escaped between t h e  experiment and the  dimension measurements. 

The 

0 

I f  t h e  curve i n  F ig .  26 i s  accepted as: a b a s i s  f o r  determining t h e  

i n t e g r a l  cross  sec t ion  f o r  production of a charged p a r t i c l e  having energy 

over 20 MeV by cobal t ,  a value of 0.68 barn i s  obtained,  i n  disagreement 

with the  corresponding B e r t i n i  cascade es t imate  of 0.56 barn.  

percent  of  the a r e a  of F ig .  26 i s  f o r  angles  g r e a t e r  than  60°.)  

(Th i r ty  

Comparison of D i f f e r e n t i a l  Cross Sec t ions  

Figure 29 i l l u s t r a t e s  a t y p i c a l  comparison between c a l c u l a t i o n  and 

observat ion,  t h a t  f o r  protons a t  45' from a coba l t  t a r g e t ,  and c l a r i f i e s  

t he  t y p i c a l  e f f e c t  of i nc lus ion  of t h e  evaporat ion e s t ima te  and of 

smearing the  est imates  t o  allow d i r e c t  comparison wi th  experiment. The 

observed spectrum i s  s o f t e r ,  showing no quas i - f ree  s c a t t e r i n g  peak, 

though t h e  area i s  t he  same. This con t r a s t  was s l i g h t l y  l e s s  marked 

f o r  aluminum a t  45 , but i s  s t rong ly  c h a r a c t e r i s t i c  of a l l  t h e  compari- 

sons a t  30 , represented by Fig .  28. The d i f fe rence  i s  l e s s  pronounced 

f o r  heavier  nuclides,  bu t  t h e  B e r t i n i  p red ic t ions  a t  30 
show a broad peak near t h e  energy which corresponds t o  t h a t  from quasi- 

f r e e  proton-nucleon s c a t t e r i n g ,  whereas, as i l l u s t r a t e d  i n  F ig .  20, an 

unpeaked shape i s  c h a r a c t e r i s t i c  of a l l  t h e  30' experimental  da t a  of 

t h i s  r e p o r t .  Table 9 indica ted  the  c o r o l l a r y  s t rong  disagreement i n  

0 

0 

0 f o r  a l l  nucl ides  

~ 

3eTable 9 indicated t h a t  t h i s  behavior p e r s i s t s  f o r  t h e  low-energy 
po r t ion  of t he  30° data .  
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t h e  c ross  sec t ion  observed f o r  protons of l e s s  than  60 MeV. 

low energies the  de tec tor  reso lu t ion  does not inf luence the  comparison. 

A t  these  

B e r t i n i  reports5’ t h a t  t he  peaking near the  maximum energy f o r  small 

angles,  c l e a r l y  seen i n  comparisons with the  H a r w e l l  data” a t  140 MeV, 

i s  d i f f i c u l t  t o  e l iminate  from the cascade est imates  without destruying 

some of the  f i t s  t o  o ther  da ta  which were obtained from the  model a s  

o r i g i n a l l y  presented. 

of t h e  nucleus, whatever i t s  shape. The more recent  work of M i l l e r 5 4  

i nd ica t e s  t h a t  t h e  peaking i s  reduced by r e f l e c t i o n  and/or r e f r a c t i o n  

e f f e c t s .  

The peaking may be reduced by decreasing the  s i z e  

Figure 27 i l l u s t r a t e d  t h a t  f o r  cobal t  a t  60’ t he  cascade est imates  

are i n  exce l l en t  accord with the observed d i f f e r e n t i a l  cross  sec t ion .  

This was a l s o  observed f o r  t h e  alminum t a r g e t .  The in fe r r ed  oxygen 

cross  sec t ions  of Figs.  24 and 25 ind ica te  t h a t  t he  observat ions a re  

considerably higher than expected, but  note t h e  unusually la rge  uncer- 

t a i n t y  i n  the  t a r g e t  thickness f o r  those cases.  

V I 1  . CONCLUSIONS 

The experimental r e s u l t s  presefited here  seem cons i s t en t  with those 

obtained by o ther  inves t iga tors  with the  excepLloii of t h e  verk nf Roos 

and Wall.14 

secondary energies  could be explained if the  r e so lu t ion  funct ions e s t i -  

mated here  are too narrow, although most of t he  da ta  on which t o  base 

the  r e so lu t ion  est imates  a re  f o r  t h e  160-MeV region. 

disagreement a t  40 t o  60 MeV i s  inexplicable;  t h e  approximately co r rec t ly  

observed p-p s c a t t e r i n g  s t rongly supports the r e s u l t s  of t h i s  r epor t  

s ince  a hypothe t ica l  shape e r ro r  i n  t h e  spec t ra  here  would have t o  be 

assoc ia ted  with a considerable energy e r r o r  i n  the  pos i t i on  of t he  p-p 

peak i n  Fig.  24. 

The comparisons with the cascade-plus-evaporation theory a re  

remarkably encouragirig, tkugh the d i  sagreements a t  30° i n  the case of 

bismuth and carbon t a r g e t s  are  puzzling. The general  agreement of t h e  

angle and energy d i s t r ibu t ions  i s  taken by us t o  imply t h e  approximate 

Presumably the r e l a t i v e l y  low cross  sec t ions  a t  high 

The even s t ronger  

H. Be r t in i ,  p r i v a t e  communication (1964). 55 
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v a l i d i t y  of t he  cascade model, a t  t h e s e  energies ,  while no s t rong  s t a t e -  

ment can be made about t h e  evaporation con t r ibu t ion  because it i s  so 

small .  This remarkable genera l  agreement disappears  i f  one changes major 

f e a t u r e s  of the  nuclear  model such as the  stepped edge, e t c .  5 5  

There are  two a reas  of cons i s t en t  disagreement with the  B e r t i n i  

ca lcu la t ions  : 

1. Estimates a t  back angles  a r e  f a r  t oo  s m a l l .  S ingle  quasi-free 

in t e rac t ions  cannot give much backsca t te r ing ,  though such s c a t t e r i n g  i n  

a r e a l  nucleus would be encouraged by a tendency t o  i n t e r a c t  simultan- 

eously with two nucleons -- or ,  put  another  way, by any f a i l u r e  of t h e  

notion t h a t  the t a r g e t  nucleons see  on ly  t h e  f i x e d  average p o t e n t i a l .  

Fur ther ,  t h e  average e x c i t a t i o n  energy remaining with the  nucleus a f t e r  

t h e  cascade process i s  enough t o  a i d  t h e  back-angle c ross  sec t ions  if 

t h e  evaporation theory i s  badly i n  e r r o r ,  f o r  instance,  if l e v e l s  near 

t he  ground s t a t e  should have more than a p r i o r i  equa l  p r o b a b i l i t y  of 

e x c i t a t i o n  i n  t h e  decay of t he  compound system. S t a t e s  r e s u l t i n g  from 

a single-knockout r eac t ion  appear indeed t o  be r a t h e r  similar t o  s t a t e s  

of low exc i t a t ion .  I n  any case,  t he  exponent ia l  spectrum used by 

Dresner (modified by b a r r i e r  e f f e c t )  i s  only  intended proper ly  t o  

represent  t h e  low-energy evaporated nucleons. 

performed t o  obtain the  spectrum approximation i s  reasonably v a l i d  

only f o r  low-energy emitted p a r t i c l e s . )  

A t  angles through 45 

- 

(The s e r i e s  expansion 

0 2. t he  B e r t i n i  es t imates  give markedly l e s s  

i n t e n s i t y  than  experiment a t  energ ies  below 50 MeV or so, as we l l  as 

quasi-free s c a t t e r i n g  peaks which a r e  much more marked. These d i f f e r -  

ences could a r i s e  from f a i l u r e s  i n  the  bas i c  model assumptions or could 

represent  t h e  e f f e c t  of neglected d i s t o r t i o n s  produced by the  average 

p o t e n t i a l .  

by the  r e s u l t s  f o r  t h e  water t a r g e t  bu t  i s  weakened by t h e  f a i l u r e  of 

the experiment t o  d i f f e r e n t i a t e  between var ious  secondary charged 

p a r t i c l e s .  

The v a l i d i t y  of t h e  d a t a  i n  t h e  40-MeV region  i s  supported 

On t h e  whole, t h i s  experiment encourages t h e  i n t e r e s t i n g  p o s s i b i l i t y  

t h a t  continuum cross  sec t ions  may be p red ic t ab le  by some cascade model 

down t o  energ ies  where the  proton wavelength X i s  about t h e  s i z e  of a 



. 

t a r g e t  nucleon. From l imi ted  data  the  model seems as appl icable  t o  l ight 

nuc le i  as t o  medium-weight ones. These t e n t a t i v e  f ind ings  could be 

i l luminated by making s tud ie s  a t  lower energ ies  i n  both inc ident  and 

secondary p a r t i c l e s ,  by studying t h e  back angles more ca re fu l ly ,  by 

measuring a t  enough angles t o  allow reasonable i n t e g r a l s  over s o l i d  

angle,  and by c l e a r l y  ident i fying the  p a r t i c l e  type of a l l  secondaries.  
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Richardson, H .  Weaver, C .  0. McNew, R .  Francis,  C .  B a l l ,  and J. Madison. 

Extensive he lp  i n  ana lys i s  and computation w a s  received from R .  L. 

Cowperthwaite on the  beam s t r eng th  and duty f a c t o r ,  t h e  d e t e c t o r  time 

c a l i b r a t i o n ,  and e s p e c i a l l y  t h e  e r r o r  a n a l y s i s .  P .  M. Aebersold per- 

formed most of t h e  h i s t o r y  tape analyses t h a t  provided comparisons with 

t h e  cascade-plus-evaporation theory,  which H .  B e r t i n i  most h e l p f u l l y  

explained t o  us .  

. 
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APPENDIX: Tables of Measured Cross Sect ions 

The t ab le s  below give b i n  p rope r t i e s ,  experimental cross  sec t ions ,  

and r e l a t i v e  e r r o r s ,  a l l  i n  t h e  l abora to ry  coordinate system. The format 

includes the  l abora to ry  angle 8 i n  degrees, t h e  t a r g e t  thickness  along 

t h e  t a rge t -de t ec to r  ax is ,  and t h e  r e l a t i v e  nonassociated standard e r r o r  

f o r  each run. 

e r r o r s  are r e l a t i v e  t o  un i ty .  The d a t a  are arranged by s c a t t e r i n g  angle 

i n  o rde r  of increasing atomic weight. 

t r a c t i n g  a f i t t e d  e l a s t i c  and n e a r - e l a s t i c  con t r ibu t ion  are given i n  

brackets adjacent t o  the  unretouched values.  The d a t a  are questionable 

i n  t h e  regions so marked. Where no values are given i n  t h e  parentheses,  

t h e  uncer ta in ty  was p r o h i b i t i v e .  

The t o t a l  combined, a s soc ia t ed  (assoc) ,  and count standard 

A t  10’ t he  da t a  obtained by sub- 

21.4 f 0.2 
25.5 f 0.3 

33.2 i 0.8 
29.1 i 0.5 

38.0 f 1 . 5  
44.2 i 2.3 

71.0 f 4.7 
54.2 i 3.3 

100.4 f 5 . 5  
129.4 f 3.7 
143.3 f 0.9 

21.1 f 0.2 
25.3 f 0.3 

33.2 f 0.9 
29.0 i 0.5 

38.0 i 1.5 
44.5 f 2.3 
54.7 3 .4  
72.0 f 4.8 

102.0 f 5.5 
130.4 * 3.9 
143.8 f 0.9 

.( , Ek 
‘k (mb MeV-’ Re la t ive  Errors  

(MeV) (MeV) steradian-’ ) Combined Assoc Count 

8 = 10’ from 0.50-g/cm2 C ,  6 0  = 2.3% 

4.1 
3 -7  
3.3 
4.6 
4.3 
7 - 3  

12 .0  
19 -3  
35 -2 
39.6 
6.0 

3.5 
3 -1 
2.9 
3 - 0  
3.3 
4.6 
7 . 1  

11.9 
20.3 
18.6 
12.4 

0.89 0.16 0.16 
0.78 0.19 0.19 
0.83 0.21 0.21 
0.83 0.20 0.20 
0.77 0.25 0.25 
0.73 0.20 0.20 
0.91 0.16 0.16 
0.90(0.90) 0.14(0.14) 0.14 
1.25(0.75) 0.07(0.10) 0.07 
5 .0  ( . . . )  0.15( ...) 0.14 

14.7 ( . . . )  0.18( ...) 0.18 

e = 10 0 from 0.55-g/cm2 AI, (-) 6. = 2.4% 
0 na 

4.3 
3 -8 
3.4 
4.7 
4.4 
7.6 

12 .1  
19 - 9  
36.2 
36 - 3  

5 .0  

3 - 3  
2.9 
2.8 
2.9 
3 - 3  
4.7 
7 .3  

12.3 
20.6 
18.3 
E . 2  

1 .6  0.18 0.17 
1 . 5  0.20 0.20 
1.8 0.20 0.20 
1 .2  0.25 0.25 
1 . 5  0.25 0.25 
1 .9  0.18 0.17 
1.7 0.17 0.17 

13.2( . .  . )  0.15( ...) 0.15 
36.8( ...) 0.16( ...) 0.16 

2.0(2.0) O.Fj(0.13) 0.13 
3.2(1.8)  0.07(0.09) 0.07 

(Index 
12058) 

0.15 
0.18 
0.19 
0.18 
0.19 
0.16 
0.13 
0.11 
0.05 
0.02 
0.02 

(Index 
12070) 

0.17 
0.19 
0.18 
0.23 
0.19 
0.13 
0.15 
0.10 
0.04 
0.01 
0.02 
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. 

21.5 i 0.2 

33.6 f 0.9 
38.6 & 1.5 

25.7 f 0.3 
29.4 i 0.5 

45.1 i 2.4 
55.6 3.5 
73.3 f 4.8 

103.9 i 5.4 
131.4 f 3.5 
144.2 f 0.9 

20.0 f 0.3 

26.7 * 0.4 

38.6 i 1.7 
45.4 i 2.6 
56.6 i 3.6 
75.4 i 5.0 

107.2 & 5.3 

148.6 i 0.8 

23.5 & 0.3 

30.3 f 0.8 
14.1 3Z 1 . 0  

134.0 f 3.2 

21.7 f 0.2 
26.1 * 0.4 
30.0 f 0.7 
34.3 f 1.1 
39.7 * 1.9 
46.7 ~t 2.9 
58.4 f 4.2 
78.2 i 6.0 

109.6 f 6.2 
132.3 i 2.6 

d e , % )  
!k ( m b  MeV-’ Relative Errors 
(MeV) (MeV) steradian-’ 1 Combined Assoc Count 

0 = 10’ from 0.70-g/cm2 Co, ( F ) ~ ~  60 = 2.5% 

4.3 
3.8 
3.4 
4.8 
4.5 
7 -8 

12.4 
20.4 
37 -2  
36.6 

4.2 

3.4 2.4 0.20 0.20 
3 -1 1.6 0.30 0.30 
2 -9 2 - 3  0.25 0.25 
3 -1 1.4 0.36 0.36 
3.4 1.7 0.32 0.32 
4.8 1.8 0.25 0.25 
7.4 2.5 0.19 0.19 

12.7 3.3(3.3) 0.13(0.13) 0.13 
20.8 6.6(3.1) 0.07(0.10) 0.6 
1 7 - 9  28.5( ...) 0.15( ...) 0.15 
11.9 77.7( ...) 0.15( ...) 0.15 

60 0 = 10’ from 0.87-g/cm2 B i ,  (F),, = 2.3% 

3.6 
3 -3 
3.0 
4.0 
3.5 Y 
4.‘( 
8 - 3  

13.1 
21.7 
39.3 
36.0 

0.2 
17 - 3  
8.7 

2.1 
2 . 1  
1.3 
1.4 

-1.1 
2.1 

1.5 
6 . 1  

2 - -  

12.3 ( 12.2) 
28.6(13.0) 

114.0(. . .) 
494.0(. . .)  

0.59 0.59 
0.60 0.60 
1.03 1.03 
0.97 0.97 
1.31 1 .31  
0.43 0.42 
0.66 0.66 
0.20 0.20 
0.11(0.11) 0.11 
0.07(0.08) 0.06 
0.13(. . . ) 0.13 
0.17(. . . )  0.17 

0 so 0 = 30 f ron  0.55-g/cm2 Be, = 2.1% 

4.5 
3 *9 
3 -6 
4.9 
4.9 
8.6 

13.6 
22.3 
40.0 
27-3 

0.64 
0.50 
0.58 
0.58 
0.45 
0.48 
0.50 
0.57 
0.52 
0.49 

0.10 
0.13 
0.13 
0.14 
0.21 
0.14 

0.11 
0.08 
0.24 

0.13 

0.10 
0.13 
0.13 
0.14 
0.21 
0.14 
0.13 
0.11 
0.68 
0.240 

(Index 
12090) 

0.19 
0.29 
0.23 
0.35 
0.28 
0.22 
0.16 
0.10 
0.03 
0.01 
0.02 

(Index 
12102) 

0.59 
0.60 
1.03 
0.97 
1.31 
0.39 
3 LC 
0.18 
0.08 
0.02 
0.01 

‘”/ 

0.07 
(Index 
u038 

0.09 
0.11 
0.09 
0.08 
0.11 
0.07 
0.06 
0.04 
5.53 
0.04 



Ek 
(MeV ) 

21.5 * 0.2 
25.8 * 0.4 
29.5 * 0.5 
33.8 f 0.9 
38.8 f 2.4 
45.4 f 2.5 
56.2 f 3.5 
74.4 * 4.9 
105.1 f 5.2 
131.5 f 3.2 
145.8 i 0.8 

21.6 0.2 
25.7 f 0.4 
29.3 f 0.5 
33-3 f 0.9 
38.0 f 1.5 
44.3 f 2.3 
54.2 f 3.3 
70.9 f 4.7 

127.9 f 3.6 
141.1 It 0.9 

100.0 f 5.4 

22.4 f 0.3 

31.5 f 0.8 

40.8 f 2.1 
48.1 f 8.9 

26.9 f 0.5 

35.9 f 1.3 

60.2 f 4.9 
81.3 f 7.3 
113.3 f 7.4 
134.9 f 3.0 
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d 8 , E k )  
% (mb MeV1 Re la t ive  Er ro r s  

(MeV) (MeV) steradian-' ) Combined Assoc Count 

0 6 0  8 = 30 from 0.50-g/cmz C, (-) = 2.3% 
0 na 

4.4 
3.8 
3.4 
4.8 
4.6 
8.0 
12.7 
21.0 
37 -9 
35.6 
0.2 

3.5 
3 -1 
2.9 
3.0 
3.5 
4.9 
7.6 
13.0 
20.5 
16.9 
8.6 

0.68 
0.59 
0.77 
0.67 
0-53 
0.64 
0.68 
0.59 
0.57 
0.39 
0.27 

0.12 
0.14 
0 1 3 ~  
0.14 
0.21 
0.14 
0.11 
0.10 

0.14 
0.07 

1.27 

8 = 30' from 0.46-g/cm2 H20, (y)na 6o = 4.96 

4.1 
3 -7 
3.3 
4.6 
4.2 
7.3 
11.8 
19.3 
35 *O 
37.6 
5 -2 

3.5 
3.1 
2.9 
3.1 
3 -3 
4.6 
7.1 
11.9 
19.9 
17.9 
11.9 

1.14 

1.34 
1.15 

1.07 
0.88 
1.12 
1.14 
1.17 
1.47 
0.85 
0.49 

0.14 
0.14 
0.13 
0.15 

0.16 
0.21 

0.12 
0.11 
0.08 
0.16 
0.22 

6 0  0 = 30' from 0.57-g/cm2 D20, (--),a = 4.% 

4.5 
3 99 
5.1 
3.5 
5.1 
8.9 
14.2 
24.2 
41.6 
24.3 

3 09 
3.4 
3.4 
3 -2 
3 -9 
5 -5 
8.6 
15.2 
20.5 
15.2 

1.08 
0.90 
1.08 
1.03 
0.88 
0.91 
1.10 
1.10 
1.28 
1.29 

0.13 
0.15 
0.13 
0.19 

0.17 
0.15 

0.29 

0.22 

0.14 
0.11 

0.12 
0.14 

0.14 
0.21 
0.14 
0.11 
0.10 

0.14 

0.13 

0.07 

1.27 

0.12 

0.12 
0.14 
0.21 

0.11 
0.10 

0.13 

0.15 

0.6 
0.15 
0.21 

0.12 
0.14 
0.13 
0.18 
0.21 
0.16 
0.15 

0.29 

0.13 
0.10 

(Index 
12026) 
0.11 
0.13 
0.10 
0.10 
0.13 
0.08 
0.6 
0.05 
0.04 
0.05 
1.26 

(Index 

0.11 
0.11 
0.09 
0.10 
0.13 
0.08 
0.6 
0.05 
0.03 

11270) 

0.04 
0.14 

(Index 
12048) 
0.10 
0.12 
0.09 
0.11 
0.11 
0.08 
0.05 

0.03 
0.04 

0.04 
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o(O,Ek) 
(mb MeV-' 

s teradian- '1 
Rela t ive  Errors 

Combined A s  soc Count 

6 0  8 = 30' from 0.55-g/cm2 Ai, (T),, = 2.4$ 

20.8 f 0.1 3 -8 
24.6 f 0.2 3.4 
28.6 * 0.5 4.3 
33.2 f 0.8 4.7 
38.1 i 1.4 4.4 
44.5 i 2.2 7.6 
54.7 & 3.1 12.1 
72.0 f 4.1 19.9 
102.0 f 4.2 36.1 

143.0 f 0.6 4.8 
129.9 -f 2.5 37.5 

3 -3 
2.9 
2.9 
2.9 
3.3 
4.7 
7.3 
12.3 
20.4 
18.1 
12.0 

1.3 
1.2 
1.1 
1.3 
1.0 
0.99 
1.16 
1.06 
0.96 
0.56 
0.32 

0.13 
0.14 
0.13 
0.14 
0.21 
0.15 
0.10 
0.08 
0.07 
0.13 
0.25 

6 0  8 = 30° from 0.72-g/cm2 CO, (T)na = 2.8$ 

21.5 i 0.2 4.3 
25.7 f 0.3 3 -7 
29.1: f "5 3.4 
33.4 f 0.9 4.6 
38.2 f 1.5 4.3 
44.5 f 2.3 7 -3 
54.4 & 3.4 11.8 

129.0 i 3.6 39.0 
142.7 -I 0.9 5 -7 

71.1 * 4.8 19.3 
100.4 f 5.5 35.0 

3-5 
3-1 
3.0 
3.1 
3.4 
4.6 
7.1 
11.9 
20.1 
18.3 
12.2 

2.2 
2.0 
2.4 
1.9 
1.4 
1.8 
1.6 
1.8 

0.83 
0.51 

1.3 

0.14 

0.14 

0.24 

0.16 

n -1.6 

0.16 
0.13 
0.11 
0.08 
0.16 
0.29. 

0 6 0  8 = 30 from 0.90-g/cm2 B i ,  = 2 . 6  

20.1 f 0.2 3.5 
23.5 f 0.2 3 -2 
27.2 f 0.4 4.0 
31.4 & 0.7 4.3 
35.6 f 1.1 3.8 
40.9 f 1.8 5 -7 
48.8 & 2.6 9 98 
62.1 i 3.6 15.4 
85.3 f 4.4 26.7 
118.4 f 3.5 44.0 
138.6 f 1.1 20.2 

3.0 
2 97 
2 *7 
2.8 
2-9 
3 *9 
5 -8 
9.2 
16.7 
20.9 
15.0 

3.1 
3 07 
3 -7 
3 -8 
4.4 
2.5 
3.2 
3.0 
2-5 
1.8 
1.2 

0.23 
0.21 
0.18 
0.17 

u.26 
0.15 
0.12 
0.10 
0.12 
0.18 

0.20 

0.13 
0.14 
0.13 
0.14 
0.21 
0.15 
0.10 
0.08 
0.07 
0.13 
0.25 

0.14 
0.16 
0.14 
0.16 
0.24 
0.16 
0.13 
0.11 
0.08 
0.16 
0.29 

0.23 
0.21 
0.18 
0.17 
0.20 
c.26 
0.15 
0.12 
0.10 
0.12 
0.18 

(Index 
12014) 

0.12 

0.11 
0.10 
0.14 
0.10 

0.13 

0.07 
0.06 
0.04 
0.06 
0.23 

11246) 

0.13 
0.14 
0.12 
0.13 
0.33 
0.11 
0.09 
0.06 
0.06 
0.07 
0.24 

(Index 

(Index 

12002) 

0.23 

0.17 
0.15 
0.15 
0.22 
0.12 
0.09 
0.09 
0.08 
0.14 

0.21 
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20.4 f 0.2 
24.8 f 0.5 
29.3 f 0.8 
33.6 * 1.3 
39.4 * 2.5 
49.7 f 4.4 

107.6 f 7.0 
71.4 f 7.1 

130.7 f 2.6 

20.8 i 0.2 

30.1 f 0.9 
34.7 f 1.5 

78.3 f 7.5 
114.6 + 6.6 

25.4 f 0.5 

41.3 f 2.7 
52.9 f 4.9 

134.7 f 2.2 

21.0 f 0.2 
25.3 f 0.4 
29.5 * 0.7 
33.7 f 1.2 
39.5 f 2.2 
49.8 * 4.0 
71.3 f 5.9 
105.4 f 5.3 
126.2 f 1.8 

0 ( @ 'Ek 1 
!k (mb Mer1 Relative Errors 

Count (MeV) (MeV) steradian-' - ) Combined -- Assoc - 
0 = 45' from 0.55-g/cm2 AI, (--),, 6 0  = 2.3% 

4.0 
4.4 
4.3 
4.0 
6.1 
12.7 
25.2 

27.0 
49.6 

3.4 
3.1 
3 -0 
3.1 
4.5 
8.0 

18.1 

37.1 
24.0 

1.28 
0.95 
0.96 
1.07 
0.97 
0.98 
0 -79 
0.39 
0.18 

0. 0 
0.12y 
0.13 
0.18 
0.24 
0.17 
0.13 
0.11 
0.22 

0 6 0  0 = 45 from 0.70-g/cm2 Co, (-) = 3.6 o na 

4.3 
4.6 
4.5 
4.2 
7 -0 
14.5 
29.4 
52.1 
18.4 

9.2 
19.8 
23 -7 
17.2 

2.15 
1.89 
1.85 
0.91 
1.90 
1.63 
1.14 
0.41 
0.13 Y 

0.10 
0.12 
0.13 
0.19 
0.22 
0.18 
0.12 
0.15 
0.21 

9 = 60' from 0.44-g/cm2 H20, (y),, 60 = 5 . 8  

4.5 
3 -7 
4.3 
4.0 
6.1 
12.6 
25.1 
47.2 
22.4 

3 96 
3 -1 
3.1 
3.1 
4.5 
8 .o 
16.9 
22.3 
16.5 

0.84 
1.06 
1.28 
1-59 
1.61 
0.80 
0.34 
0.114 
0.021 

0.11 
0.11 
0.12 
0.16 
0.23 
0.16 
0.11 
0.14 
0.39 

0.10 
0.12 
0.13 
0.18 

0.17 
0.13 

0.24 

0.11 
0.22 

(Index 
12160) 

0.07 
0.09 
0.08 
0.08 
0.07 
0.05 

0.08 

0.04 
0.04 

(Index 
12138 ) 

0.10 0.07 
0.12 o 0.08 
0.13 0.08 
0.19 0.08 
0.22 0.06 
0.18 0.05 

0.15 0.05 
0.11 0.04 

0.20 0.13 

0.10 
0.10 
0.11 
0.16 
0.23 
0.15 
0.10 
0.13 
0.38 

(Index 
12244) 

0.08 
0.07 
0.06 
0.06 

0.05 
0.07 

0.04 
0.04 

0.35 

4 
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O('JEk) 

Ek % (mb MeV" Rela t ive  Er ro r s  
(MeV 1 (MeV) (MeV) steradian-' ) Combined Assoc Count 

A T  In O('JEk) 

Count 
Ek % 

(MeV 1 (MeV) (MeV) steradian-' ) Combined Assoc 

20.4 f 0.2 4.0 
24.8 f 0.4 4.4 
29.3 f 0.8 4.3 
33.6 * 1.3 4.0 
39.4 f 2.5 6.1 
49.7 f 4.4 32.7 
71.3 f 7.0 25.2 
106.7 f 6.8 48.7 
128.8 f 2.5 25.0 

3.4 
3.1 
3 -0 
3.1 
4.5 
8.0 
17.0 
23.3 
17.04 

0.90 
0.90 

0.63 
0.68 
0.63 

0.73 

0.40 
0 - 133 
0 039 

0.11 
0.11 
0.14 
0.19 
0.25 
0.18 

0.13 
0.30 

0.13 

60 8 = 60' from 0.7o-g/cm2 CO, (o)na = 3.B 

21.0 f 0.2 4.6 
25.3 f 0.3 3 -7 
29.4 f 0.6 4.2 
33.6 f 1.0 3 -9 
39.2 f 2.0 5 09 
49.2 f 3.5 12.2 
70.0 f 5.1 24.2 
106.1 f 4.5 48.7 
130.0 * 1.5 29.6 

3.5 Y 
3.1 
3.1 
3 -2 
4.4 
7 -8 
16.5 
24.0 
18.4 

1.66 
1.56 
1.14 
1.06 
1.21 
1.09 
0.68 
0.19 
0.042 

22.4 f 0.2 5.0 4.1 0.57 
27.8 f 0.4 5 -3 3 .a 0.39 
33.4 f 0.9 5 03 3 -7  0.27 
39.5 f 1-09 5.6 4.6 0.22 
49.2 & 3.4 11.7 7.6 0.12 
68.9 f 5.0 23.2 15 -7 0.072 
102.5 f 4.3 45.4 LL 33 -- 3 0.13 
124.4 * 1.4 26.2 16.8 0.006 

0.11 
0.13 
0.15 

0.23 

0.13 

c ) . x  

0.14 
0.10 

0.34 

6 0  
0 na (-) =2.7% 

0.12 
0.14 
0.18 
0.26 
0.19 
0.14 
0.25 
0.43 

0.11 
0.11 
0.14 
0.19 
0.25 
0.18 
0.13 
0.13 
0.30 

0.11 
0.12 
0.15 
0.19 
0.23 
0.14 
0. og 
0.13 
0.34 

0.11 
0.14 
0.18 
0.25 
0.19 
0.14 
0.25 
5.43 

(Index 
12234) 

0.09 
0.08 
0.09 
0.11 
0.09 
0.06 
0.05 
0.07 
0.22 

(Index 
12264) 

0. og 
0.10 
0.12 
0.14 
0.10 
0.07 
0.06 
0.09 
0.32 

(Index 
12176) 

0.10 
0.11 
0.13 
0.15 

0.23 

0.14 
0.12 

0.41 
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a ( e>Ek>  
Ek (mb MeV-’ Rela t ive  Er ro r s  

(MeV) (MeV) steradian-’ ) Combined Assoc Count (MeV 1 - 
0 6 0  e = 90 from 0.91-g/cm2 CO, = 2.8% 

23.1 i 0.2 5.8 
28.6 i 0.5 4.5 
33.7 f 1.0 5 -3 
39.8 f 2.1 5.6 
49.5 i 3.7 11.7 
69.2 f 5.8 23.1 

128.3 f 2.2 30.4 
104.3 f 6.7 46.9 

4.4 0.79 
3 -8 0.63 

7.6 0.30 
15.8 0.13 
23.5 0.035 
18.1 0.022 

3 -8 0.47 
4.6 0.44 

0.12 0.12 
0.15 0.15 
0.18 o 0.18 
0.25 0.25 
0.18 0.18 
0.15 0.15 
0.18 0.18 
0.30 0.30 

e = 120’ from 0.72-g/cm2 Co, 6 0  = 2.7% 

21.1 i 0.3 4.6 
25.5 f 0.6 3 -7 
29.6 i 0.9 4.3 

39.6 f 2.7 6.0 
49.9 * 4.9 12.7 
71.5 f 8.1 25.1 
106.2 f 8.0 47.9 
127.5 f 3.0 23.6 

33.9 f 1.05 4.0 

3.6 
3.2 
3 -2 
3.2 
4.6 
8.0 
17.0 
22.8 
16.9 

0.62 
0.37 
0.30 
0.25 

0.09 
0.036 

0.018 

0.10 

0.004 

0.16 
0.22 
0.21 
0.z 
0.44 
0.28 
0.27 
0.52 
0.40 

0.16 

0.27 

0.27 
0.26 
0.52 

0.22 
0.21 

0.44 

0.40 

(Index 
12200) 

0.10 
0.12 
0.13 
0.13 
0.11 
0.11 
0.16 
0.24 

(Index 
12214) 

0.14 
0.21 
0.18 
0.21 
0.36 
0.19 

0.50 
0.32 

0.22 


